121 research outputs found

    Fabric Defect Detection Based on Pattern Template Correction

    Get PDF
    This paper proposes a novel template-based correction (TC) method for the defect detection on images with periodic structures. In this method, a fabric image is segmented into lattices according to variation regularity, and correction is applied to reduce the effect of misalignment among lattices. Also, defect-free lattices are chosen for establishing an average template as a uniform reference. Furthermore, the defect detection procedure is composed of two steps, namely, defective lattices locating and defect shape outlining. Defective lattices locating is based on classification for defect-free and defective patterns, which involves an improved E-V method with template-based correction and centralized processing, while defect shape outlining provides pixel-level results by threshold segmentation. In this paper we also present some experiments on fabric defect detection. Experimental results show that the proposed method is effective

    Biogenesis of iron–sulfur clusters and their role in DNA metabolism

    Get PDF
    Iron–sulfur (Fe/S) clusters (ISCs) are redox-active protein cofactors that their synthesis, transfer, and insertion into target proteins require many components. Mitochondrial ISC assembly is the foundation of all cellular ISCs in eukaryotic cells. The mitochondrial ISC cooperates with the cytosolic Fe/S protein assembly (CIA) systems to accomplish the cytosolic and nuclear Fe/S clusters maturation. ISCs are needed for diverse cellular functions, including nitrogen fixation, oxidative phosphorylation, mitochondrial respiratory pathways, and ribosome assembly. Recent research advances have confirmed the existence of different ISCs in enzymes that regulate DNA metabolism, including helicases, nucleases, primases, DNA polymerases, and glycosylases. Here we outline the synthesis of mitochondrial, cytosolic and nuclear ISCs and highlight their functions in DNA metabolism

    The neurological and non-neurological roles of the primary microcephaly-associated protein ASPM

    Get PDF
    Primary microcephaly (MCPH), is a neurological disorder characterized by small brain size that results in numerous developmental problems, including intellectual disability, motor and speech delays, and seizures. Hitherto, over 30 MCPH causing genes ( MCPHs ) have been identified. Among these MCPHs , MCPH5 , which encodes abnormal spindle-like microcephaly-associated protein (ASPM), is the most frequently mutated gene. ASPM regulates mitotic events, cell proliferation, replication stress response, DNA repair, and tumorigenesis. Moreover, using a data mining approach, we have confirmed that high levels of expression of ASPM correlate with poor prognosis in several types of tumors. Here, we summarize the neurological and non-neurological functions of ASPM and provide insight into its implications for the diagnosis and treatment of MCPH and cancer

    Cytokinesis and cancer: polo loves ROCK'n' Rho(A)

    Get PDF
    Cytokinesis is the last step of the M (mitosis) phase, yet it is crucial for the faithful division of one cell into two. Cytokinesis failure is often associated with cancer. Cytokinesis can be morphologically divided into four steps: cleavage furrow initiation, cleavage furrow ingression, midbody formation and abscission. Molecular studies have revealed that RhoA as well as its regulators and effectors are important players to ensure a successful cytokinesis. At the same time, Polo-like kinase 1 (Plk1) is an important kinase that can target many substrates and carry out different functions during mitosis, including cytokinesis. Recent studies are beginning to unveil a closer tie between Plk1 and RhoA networks. More specifically, Plk1 phosphorylates the centralspindlin complex Cyk4 and MKLP1/CHO1, thus recruiting RhoA guanine nucleotide-exchange factor (GEF) Ect2 through its phosphopeptide-binding BRCT domains. Ect2 itself can be phosphorylated by Plk1 in vitro. Plk1 can also phosphorylate another GEF MyoGEF to regulate RhoA activity. Once activated, RhoA-GTP will activate downstream effectors, including ROCK1 and ROCK2. ROCK2 is among the proteins that associate with Plk1 Polo-binding domain (PBD) in a large proteomic screen, and Plk1 can phosphorylate ROCK2 in vitro. We review current understandings of the interplay between Plk1, RhoA proteins and other proteins (e.g., NudC, MKLP2, PRC1, CEP55) involved in cytokinesis, with particular emphasis of its clinical implications in cancer

    The neurological and non-neurological roles of the primary microcephaly-associated protein ASPM

    Get PDF
    Primary microcephaly (MCPH), is a neurological disorder characterized by small brain size that results in numerous developmental problems, including intellectual disability, motor and speech delays, and seizures. Hitherto, over 30 MCPH causing genes (MCPHs) have been identified. Among these MCPHs, MCPH5, which encodes abnormal spindle-like microcephaly-associated protein (ASPM), is the most frequently mutated gene. ASPM regulates mitotic events, cell proliferation, replication stress response, DNA repair, and tumorigenesis. Moreover, using a data mining approach, we have confirmed that high levels of expression of ASPM correlate with poor prognosis in several types of tumors. Here, we summarize the neurological and non-neurological functions of ASPM and provide insight into its implications for the diagnosis and treatment of MCPH and cancer

    The development of a competency assessment standard for general practitioners in China

    Get PDF
    This paper describes the development of a competency assessment standard for General Practitioners in Shenzhen, China. The standard is to be used for developing and delivering the training curriculum for General Practitioners and to enable rigorous assessment of the mastery of the standards by GP trainees. The requirement for the training of General Practitioners in China is mandated by government policy requires an international standard curriculum to meet the needs of patients and the community. A modified Delphi process was employed to arrive at a curriculum consensus. An expert panel and 14 expert working groups derived from the expert panel were established to review and evaluate national and international competency standards for General Practice and develop a set of standards, through a modified Delphi methodology. Forty three experts were involved in the project. The project resulted in a detailed curriculum statement. The curriculum was then used in 2017 and 2018 where pilot examinations of GP trainees (n = 298 and n = 315, respectively) were conducted to assess the trainee's competencies against the Standards. The examination included two modules, a written test (Module A) and a practical test (Module B). The success rate for participants was relatively low with the majority not successfully completing the assessments. The assessments will be further refined in subsequent work. The project achieved its goal of developing a rigorously evaluated standard to support clinical practice and the training and assessment of GPs. © Copyright © 2020 Rao, Lai, Wu, Li, Xu, Browning and Thomas

    Efficient production of human acidic fibroblast growth factor in pea (Pisum sativum L.) plants by agroinfection of germinated seeds

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For efficient and large scale production of recombinant proteins in plants transient expression by agroinfection has a number of advantages over stable transformation. Simple manipulation, rapid analysis and high expression efficiency are possible. In pea, Pisum sativum, a Virus Induced Gene Silencing System using the pea early browning virus has been converted into an efficient agroinfection system by converting the two RNA genomes of the virus into binary expression vectors for Agrobacterium transformation.</p> <p>Results</p> <p>By vacuum infiltration (0.08 Mpa, 1 min) of germinating pea seeds with 2-3 cm roots with <it>Agrobacteria </it>carrying the binary vectors, expression of the gene for Green Fluorescent Protein as marker and the gene for the human acidic fibroblast growth factor (aFGF) was obtained in 80% of the infiltrated developing seedlings. Maximal production of the recombinant proteins was achieved 12-15 days after infiltration.</p> <p>Conclusions</p> <p>Compared to the leaf injection method vacuum infiltration of germinated seeds is highly efficient allowing large scale production of plants transiently expressing recombinant proteins. The production cycle of plants for harvesting the recombinant protein was shortened from 30 days for leaf injection to 15 days by applying vacuum infiltration. The synthesized aFGF was purified by heparin-affinity chromatography and its mitogenic activity on NIH 3T3 cells confirmed to be similar to a commercial product.</p

    Identification of 27 abnormalities from multi-lead ECG signals: An ensembled Se-ResNet framework with Sign Loss function

    Full text link
    Cardiovascular disease is a major threat to health and one of the primary causes of death globally. The 12-lead ECG is a cheap and commonly accessible tool to identify cardiac abnormalities. Early and accurate diagnosis will allow early treatment and intervention to prevent severe complications of cardiovascular disease. In the PhysioNet/Computing in Cardiology Challenge 2020, our objective is to develop an algorithm that automatically identifies 27 ECG abnormalities from 12-lead ECG recordings

    The ARID1A-METTL3-m6A axis ensures effective RNase H1-mediated resolution of R-loops and genome stability

    Get PDF
    R-loops are three-stranded structures that can pose threats to genome stability. RNase H1 precisely recognizes R-loops to drive their resolution within the genome, but the underlying mechanism is unclear. Here, we report that ARID1A recognizes R-loops with high affinity in an ATM-dependent manner. ARID1A recruits METTL3 and METTL14 to the R-loop, leading to the m6A methylation of R-loop RNA. This m6A modification facilitates the recruitment of RNase H1 to the R-loop, driving its resolution and promoting DNA end resection at DSBs, thereby ensuring genome stability. Depletion of ARID1A, METTL3, or METTL14 leads to R-loop accumulation and reduced cell survival upon exposure to cytotoxic agents. Therefore, ARID1A, METTL3, and METTL14 function in a coordinated, temporal order at DSB sites to recruit RNase H1 and to ensure efficient R-loop resolution. Given the association of high ARID1A levels with resistance to genotoxic therapies in patients, these findings open avenues for exploring potential therapeutic strategies for cancers with ARID1A abnormalities
    corecore