256 research outputs found

    G-Mix: A Generalized Mixup Learning Framework Towards Flat Minima

    Full text link
    Deep neural networks (DNNs) have demonstrated promising results in various complex tasks. However, current DNNs encounter challenges with over-parameterization, especially when there is limited training data available. To enhance the generalization capability of DNNs, the Mixup technique has gained popularity. Nevertheless, it still produces suboptimal outcomes. Inspired by the successful Sharpness-Aware Minimization (SAM) approach, which establishes a connection between the sharpness of the training loss landscape and model generalization, we propose a new learning framework called Generalized-Mixup, which combines the strengths of Mixup and SAM for training DNN models. The theoretical analysis provided demonstrates how the developed G-Mix framework enhances generalization. Additionally, to further optimize DNN performance with the G-Mix framework, we introduce two novel algorithms: Binary G-Mix and Decomposed G-Mix. These algorithms partition the training data into two subsets based on the sharpness-sensitivity of each example to address the issue of "manifold intrusion" in Mixup. Both theoretical explanations and experimental results reveal that the proposed BG-Mix and DG-Mix algorithms further enhance model generalization across multiple datasets and models, achieving state-of-the-art performance.Comment: 19 pages, 23 figure

    AdaER: An Adaptive Experience Replay Approach for Continual Lifelong Learning

    Full text link
    Continual lifelong learning is an machine learning framework inspired by human learning, where learners are trained to continuously acquire new knowledge in a sequential manner. However, the non-stationary nature of streaming training data poses a significant challenge known as catastrophic forgetting, which refers to the rapid forgetting of previously learned knowledge when new tasks are introduced. While some approaches, such as experience replay (ER), have been proposed to mitigate this issue, their performance remains limited, particularly in the class-incremental scenario which is considered natural and highly challenging. In this paper, we present a novel algorithm, called adaptive-experience replay (AdaER), to address the challenge of continual lifelong learning. AdaER consists of two stages: memory replay and memory update. In the memory replay stage, AdaER introduces a contextually-cued memory recall (C-CMR) strategy, which selectively replays memories that are most conflicting with the current input data in terms of both data and task. Additionally, AdaER incorporates an entropy-balanced reservoir sampling (E-BRS) strategy to enhance the performance of the memory buffer by maximizing information entropy. To evaluate the effectiveness of AdaER, we conduct experiments on established supervised continual lifelong learning benchmarks, specifically focusing on class-incremental learning scenarios. The results demonstrate that AdaER outperforms existing continual lifelong learning baselines, highlighting its efficacy in mitigating catastrophic forgetting and improving learning performance.Comment: 18 pages, 26 figure

    A Comparative Analysis of Deep Reinforcement Learning-enabled Freeway Decision-making for Automated Vehicles

    Full text link
    Deep reinforcement learning (DRL) is becoming a prevalent and powerful methodology to address the artificial intelligent problems. Owing to its tremendous potentials in self-learning and self-improvement, DRL is broadly serviced in many research fields. This article conducted a comprehensive comparison of multiple DRL approaches on the freeway decision-making problem for autonomous vehicles. These techniques include the common deep Q learning (DQL), double DQL (DDQL), dueling DQL, and prioritized replay DQL. First, the reinforcement learning (RL) framework is introduced. As an extension, the implementations of the above mentioned DRL methods are established mathematically. Then, the freeway driving scenario for the automated vehicles is constructed, wherein the decision-making problem is transferred as a control optimization problem. Finally, a series of simulation experiments are achieved to evaluate the control performance of these DRL-enabled decision-making strategies. A comparative analysis is realized to connect the autonomous driving results with the learning characteristics of these DRL techniques.Comment: 11 pages, 10 figure

    Prioritized Planning for Target-Oriented Manipulation via Hierarchical Stacking Relationship Prediction

    Full text link
    In scenarios involving the grasping of multiple targets, the learning of stacking relationships between objects is fundamental for robots to execute safely and efficiently. However, current methods lack subdivision for the hierarchy of stacking relationship types. In scenes where objects are mostly stacked in an orderly manner, they are incapable of performing human-like and high-efficient grasping decisions. This paper proposes a perception-planning method to distinguish different stacking types between objects and generate prioritized manipulation order decisions based on given target designations. We utilize a Hierarchical Stacking Relationship Network (HSRN) to discriminate the hierarchy of stacking and generate a refined Stacking Relationship Tree (SRT) for relationship description. Considering that objects with high stacking stability can be grasped together if necessary, we introduce an elaborate decision-making planner based on the Partially Observable Markov Decision Process (POMDP), which leverages observations and generates the least grasp-consuming decision chain with robustness and is suitable for simultaneously specifying multiple targets. To verify our work, we set the scene to the dining table and augment the REGRAD dataset with a set of common tableware models for network training. Experiments show that our method effectively generates grasping decisions that conform to human requirements, and improves the implementation efficiency compared with existing methods on the basis of guaranteeing the success rate.Comment: 8 pages, 8 figure

    Quartz sand surface morphology of granitic tafoni at Laoshan, China

    Get PDF
    43-48In this study, a SEM method was used to analyze the surface morphology of the quartz sand granitic tafoni at Laoshan, for the purpose of exploring the weathering process of this tafoni. Present study showed that granitic tafoni at Laoshan, the quartz sand roundness was dominated by angular and sub-angular morphologies. Massive Hydrodynamic features had been developed on the quartz sand surfaces, as well as wind and chemistry forms, which were more developed. It was determined that granitic tafoni at Laoshan, the quartz sand had suffered long-term rainy and windy mechanical erosion, as well as chemical dissolution from residual pit water. These findings differed from the earlier views that the tafone was formed by the glacial melt water

    Prospect of detecting magnetic fields from strong-magnetized binary neutron stars

    Full text link
    Binary neutron star mergers are unique sources of gravitational waves in multi-messenger astronomy. The inspiral phase of binary neutron stars can emit gravitational waves as chirp signals. The present waveform models of gravitational wave only considered the gravitational interaction. In this paper, we derive the waveform of the gravitational wave signal taking into account the presence of magnetic fields. We found that the electromagnetic interaction and radiation can introduce different frequency-dependent power laws for both amplitude and frequency of the gravitational wave. We show from the results of Fisher information matrix that the third-generation observation may detect magnetic dipole moments if the magnetic field is around 10^17 G
    corecore