61 research outputs found

    Bond Behavior between Steel Fiber Reinforced Polymer (SRP) and Concrete

    Get PDF
    Steel fiber reinforced polymer (SRP) composite materials, which consist of continuous unidirectional steel wires (cords) embedded in a polymeric matrix, have recently emerged as an effective solution for strengthening of reinforced concrete (RC) structures. SRP is bonded to the surface of RC structures by the same matrix to provide external reinforcement. Interfacial debonding between the SRP and concrete is a primary concern in this type of application. This study aimed to investigate the bond characteristics between SRP and concrete determined by single-lap direct shear tests with different composite bonded lengths and fiber sheet densities (cord spacings). Specimens with medium density fibers failed mainly due to composite debonding, whereas those with low density fibers failed due to fiber rupture. Results of specimens that exhibited debonding were used to determine the bond-slip relationship of the SRP-concrete interface and to predict the full-range load response, which was in good agreement with the experimental results. A database of SRP-concrete direct shear tests reported in the literature was also established. Four analytical equations derived for fiber reinforced polymer (FRP)-concrete debonding were evaluated based on the database results and were found to predict the maximum load within approximately 15% error on average, however, they all underestimated the effective bond length

    A Spike-shaped Anchorage For Steel Reinforced Polymer (SRP)-strengthened Concrete Structures

    Get PDF
    Steel reinforced polymer (SRP) composite has recently emerged as an effective and economical solution for strengthening of reinforced concrete (RC) structures. Premature debonding failure of unanchored SRP at low load levels generally governs the performance of RC structures strengthened with externally bonded SRP. Therefore, a novel yet simple spike-shaped anchorage system was proposed in this study to prevent the debonding failure of SRP and to improve the interfacial shear capacity. Experimental investigation through single-lap shear tests of SRP-concrete joints showed that the anchorage system changed the failure mode from composite debonding to fiber rupture. In addition, the anchorage system substantially increased the peak load and reduced the interfacial slippage of the SRP-concrete joint compared to the unanchored condition. A numerical procedure based on the finite difference method was developed to predict the full-range load response, and results matched well with the full-range experimental responses of anchored and unanchored specimens. Parametric study of the test results and numerical simulation based on finite difference method both showed that the fiber rupture failure mode could be achieved for anchors in various positions along the bonded length. The closer the anchor is to the loaded end, the less global slip was obtained when the load reached the peak value

    A safety check method to maximize the effective reserve by optimizing the power of the tie-line in the power market

    Get PDF
    To ensure the stability of the electricity spot market and the safety of the provincial and regional power systems, a safety check method is proposed to maximize the effective reserve resources in the power system by optimizing the power of each tie-line. This safety check method accurately models the tie-line equipment and the effective reserve resources and is coupled with each constraint of the electricity spot market clearing model to form a safety check algorithm to optimize the power of tie-line power. The model involved in this paper is a linear model, which has a clear implementation method in practical dispatching applications. Through this method, the power configuration scheme of each tie-line to meet the electricity spot market constraints can be obtained, and the safety check results have the executability of the power market. The rationality and feasibility of the safety check algorithm results are verified by simulating the provincial-scale electricity spot market. According to the simulation results, this method can release effective reserve resources and provide more guarantees for the safe operation of the power grid. In addition, this method can save up to 4.9% of the total operation cost of the power system and improve the dispatching economy of the power system. This method is of great significance to ensure the safe operation of the power system and the day-ahead market and real-time market scheduling in the actual power spot system. In addition, this method also has great guiding significance for the analysis of the actual reserve situation of the power market after the event

    HMGB1: a double-edged sword and therapeutic target in the female reproductive system

    Get PDF
    HMGB1 that belongs to the High Mobility Group-box superfamily, is a nonhistone chromatin associated transcription factor. It is present in the nucleus of eukaryotes and can be actively secreted or passively released by kinds of cells. HMGB1 is important for maintaining DNA structure by binding to DNA and histones, protecting it from damage. It also regulates the interaction between histones and DNA, affecting chromatin packaging, and can influence gene expression by promoting nucleosome sliding. And as a DAMP, HMGB1 binding to RAGE and TLRs activates NF-ÎșB, which triggers the expression of downstream genes like IL-18, IL-1ÎČ, and TNF-α. HMGB1 is known to be involved in numerous physiological and pathological processes. Recent studies have demonstrated the significance of HMGB1 as DAMPs in the female reproductive system. These findings have shed light on the potential role of HMGB1 in the pathogenesis of diseases in female reproductive system and the possibilities of HMGB1-targeted therapies for treating them. Such therapies can help reduce inflammation and metabolic dysfunction and alleviate the symptoms of reproductive system diseases. Overall, the identification of HMGB1 as a key player in disease of the female reproductive system represents a significant breakthrough in our understanding of these conditions and presents exciting opportunities for the development of novel therapies

    The role of connectivity in significant bandgap narrowing for fused-pyrene based non-fullerene acceptors toward high-efficiency organic solar cells

    Get PDF
    Great attention has been paid to developing low bandgap non-fullerene acceptors (NFAs) for matching wide bandgap donor polymers to increase the photocurrent and therefore the power conversion efficiencies (PCEs) of NFA organic solar cells, while pyrene-core based acceptor-donor-acceptor (A-D-A) NFAs have been mainly reported via the 2,9-position connection due to their bisthieno[3â€Č,2â€Č-b']thienyl[a,h]pyrene fused via a five-membered ring bridge at the ortho-position of pyrene as the representative one named FPIC5, which has prohibited further narrowing their energy gap. Herein, an acceptor FPIC6 was exploited by creating the 1,8-position connection through fusing as bisthieno[3â€Č,2â€Č-bâ€Č]thienyl[f-g,m-n]pyrene linked at the bay-position via a six-membered bridge, with enhanced push-pull characteristics within such A-D-A structure. As a structural isomer of FPIC5, FPIC6 exhibited a much lower bandgap of 1.42 eV (1.63 eV for FPIC5). Therefore, the photocurrent and PCE of PTB7-Th:FPIC6 cells were improved to 21.50 mA cm-2 and 11.55%, respectively, due to the balanced mobilities, better photoluminescence quenching efficiency and optimized morphology, which are both ∌40% better than those of PTB7-Th:FPIC5 cells. Our results clearly proved that a pyrene fused core with 1,8-position connection with electron-withdrawing end groups instead of 2,9-position connection is an efficient molecular design strategy to narrow the optical bandgap and improve the photovoltaic performance of NFA based OSCs

    Bond behavior of advanced fiber reinforced composite-concrete joints

    Get PDF
    “Externally bonding advanced composite materials to concrete structures is an effective way to improve their strength, ductility, and durability. The interfacial bond behavior is fundamental to understand the overall structural performance of concrete structures strengthened with advanced composite materials. This study includes a comprehensive investigation of the bond behavior of composite-concrete joints with different fiber reinforced composite types. First, a direct approach to determine the bond-slip relationship for fiber reinforced cementitious matrix (FRCM)-concrete joints based on fiber strain measurements was proposed. Then, an analytical solution to predict the full-range response of FRCM-concrete joints was derived by assuming a trilinear bond-slip relationship. The analytical results were compared with experimental load responses to indirectly determine the bond-slip relationship. Next, the experimental load response of steel fiber reinforced polymer (SRP)-concrete joints was explored by single-lap direct shear tests. Lastly, a novel non-destructive evaluation method – active microwave thermography – was used to detect the existence of initial interfacial defects in carbon fiber reinforced polymer (CFRP)-concrete joints, and to monitor the progressive debonding between CFRP and concrete”--Abstract, page iv

    Experimental Investigation of the Natural Bonding Strength between Stay-In-Place Form and Concrete in FRP-Concrete Decks/Beams

    No full text
    The Fiber Reinforced Polymer (FRP)-concrete hybrid deck/beam is a structural system that combines the durable thin-walled FRP composite profiles and the cost-effective concrete by interfacial shear connections. The interfacial slip can reduce the composite action, thereby causing a degradation of flexural rigidity and capacity. Therefore, using stay-in-place (SIP) forms is a simple way to fully utilize the natural bonding between FRP and concrete, which plays a pivotal role in the structural design of FRP-concrete hybrid decks/beams. This paper presents an experimental study on the natural bonding provided by the SIP forms and the in situ cast concrete. First, four comparative push-out test specimens revealed that the use of SIP forms could improve the ultimate shear capacity of steel bolts by 11.1%. Moreover, it could provide an initial stage with nearly zero slip. The average natural bonding strength of FRP-concrete was evaluated as 0.27 MPa, which agreed well with previous tests in the literature. Second, the beam specimen also confirmed that there was a load response stage with nearly zero slip along the FRP-concrete interface when SIP forms were used as the permanent form. Third, the strain measurements on the steel bolts, FRP profile, and concrete revealed that the failure of the natural bonding was a brittle process. Finally, the flexural response of the FRP-concrete hybrid beam was analytically modeled as three distinct stages, namely the full composite action stage, the slipping stage caused by a natural bonding decrease, and the partial composite action stage

    Bilinear load-deflection model of fiber-reinforced polymer–concrete composite beam with interface slip

    No full text
    The design of fiber-reinforced polymer–concrete hybrid beam is usually governed by deformation. Due to the rigidity degradation caused by fiber-reinforced polymer–concrete slip, the load–slip and load–deflection curves demonstrate a bilinear characteristic. The originality of this article is to propose a bilinear analytical model and to determine two dominant parameters in this model, namely, initial bond stress and slip modulus of the interconnection. This model consists of two distinct linear stages. In Stage I, full composite action between fiber-reinforced polymer and concrete is obtained, and no slip exists; Stage II commences once interfacial bond force diminishes, when slip increases linearly versus load, and the overall beam rigidity drops compared with that in Stage I, indicating only partial composite action is realized. Finally, three large-scale specimens were tested to validate the proposed bilinear model and to calculate the two parameters

    Full-Range Behavior of Fiber Reinforced Cementitious Matrix (FRCM)-Concrete Joints using a Trilinear Bond-Slip Relationship

    No full text
    Interfacial debonding of fiber reinforced cementitious matrix (FRCM)-concrete joints can be considered as a mainly mode-II fracture process, a problem that can be solved by accounting for one-dimensional interfacial shear stress-slip relationships. This paper presents an analytical approach to predict the load response of FRCM-concrete joints by adopting a trilinear bond-slip relationship consisting of a linear-elastic branch, a softening branch, and a friction branch. The applied load-global slip response of FRCM-concrete joints with (relatively) long bonded length includes five stages: elastic, elastic-softening, elastic-softening-debonding, softening-debonding, and debonding stages. Closed-form solutions of the interfacial slip, shear stress, and axial stress (or strain) distribution along the bonded length are provided. The response of FRCM-concrete joints with (relatively) short bonded length is examined. The effective bond length and a critical length for the existence of the snap-back phenomenon are derived. Experimental results reported in the literature are used to calibrate the parameters needed for the analytical approach. The analytical results are then compared with experimental results and with numerical results determined using a finite difference method (FDM). Finally, the capability of determining the parameters in the trilinear bond-slip relationship using a neural network (NN) with the experimental load response as the input is investigated
    • 

    corecore