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HMGB1 that belongs to the HighMobility Group-box superfamily, is a nonhistone

chromatin associated transcription factor. It is present in the nucleus of

eukaryotes and can be actively secreted or passively released by kinds of cells.

HMGB1 is important for maintaining DNA structure by binding to DNA and

histones, protecting it from damage. It also regulates the interaction between

histones and DNA, affecting chromatin packaging, and can influence gene

expression by promoting nucleosome sliding. And as a DAMP, HMGB1 binding

to RAGE and TLRs activates NF-kB, which triggers the expression of downstream

genes like IL-18, IL-1b, and TNF-a. HMGB1 is known to be involved in numerous

physiological and pathological processes. Recent studies have demonstrated the

significance of HMGB1 as DAMPs in the female reproductive system. These

findings have shed light on the potential role of HMGB1 in the pathogenesis of

diseases in female reproductive system and the possibilities of HMGB1-targeted

therapies for treating them. Such therapies can help reduce inflammation and

metabolic dysfunction and alleviate the symptoms of reproductive system

diseases. Overall, the identification of HMGB1 as a key player in disease of the

female reproductive system represents a significant breakthrough in our

understanding of these conditions and presents exciting opportunities for the

development of novel therapies.

KEYWORDS

HMGB1, pregnancy complications, female reproductive system diseases, inflammation,
anti-HMGB1
1 Introduction

High-mobility group proteins (HMG) were first extracted and identified in the bovine

thymus in 1973 and named for their high mobility in gel electrophoresis (1). Based on their

functional sequence motif characteristics, HMG proteins are divided into three

superfamilies: HMGB, HMGA, and HMGN (2). As the most abundant protein among
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all HMG family members, HMGB1 is a multifunctional protein that

plays a crucial role in various cellular processes (3). As a DNA-

binding nuclear factor, it regulates the transcriptional activity of

genes, controls DNA replication and repair, and facilitates telomere

maintenance and nucleosome assembly (4). In addition to its

intracellular functions, HMGB1 can be transferred into the

extracellular environment (5). the released or secreted HMGB1

functions as a damage-associated molecular pattern (DAMPs) that

can interact with pattern recognition receptors (PRRs), such as

receptors for advanced glycation end-products (RAGE) and toll-like

receptors (TLRs) (6). Under normal conditions, HMGB1 can

promote cell proliferation and differentiation, promote

inflammatory reaction and immune response, participate in tissue

repair and regeneration, and regulate gene expression and

transcription (7–10). In pathological conditions, HMGB1 plays a

crucial role in amplifying the inflammatory response and driving

the pathogenesis of many diseases. For instance, HMGB1 has been

implicated in several malignancies, including breast, lung, and

colorectal cancers (11). Overall, these findings highlight the

importance of HMGB1 in multiple cellular processes and suggest

that it may be a potential therapeutic target for various diseases.

Pregnancy is a complex physiological process. During

pregnancy, the maternal immune system is constantly changing

in response to fetal development and environmental signals.

Inflammation is a critical mechanism in the establishment of

pregnancy, the initiation of labor, and the development of many

pregnancy complications (12, 13). Normal pregnancy has three

distinct immunological phases that are characterized by distinct

biological processes. The first trimester of pregnancy is a pro-

inflammatory phase. Early pregnancy includes events such as

decidualization, implantation, trophoblast development, and

placental growth. At this stage, the blastocyst breaks through the

uterus lining and invades the endometrial tissue (14). Therefore, an

inflammatory environment is necessary for repairing the uterine

epithelium and removing cellular debris. In the second trimester of

pregnancy, the fetus grows rapidly while the mother, placenta, and

fetus work together to induce an anti-inflammatory state. During

the final trimester of pregnancy, the baby’s organs fully develop and

the mother’s body prepares for birth. The uterus contracts due to a

pro-inflammatory environment in this stage, which helps with the

expulsion of the baby and placenta (15). Whether before or at any

stage of pregnancy, immune disorders can have a significant impact

on pregnancy outcomes.

Over the last decade, extensive studies have demonstrated that

HMGB1 plays a vital role throughout pregnancy and is involved in

various diseases of the female reproductive system (Figure 1).

HMGB1 promotes uterine decidualization and embryo

implantation, and embryonic development in the first trimester

(16–19), and cervical ripening and delivery in the third trimester

(20). However, high level of HMGB1 levels may result in female

reproductive disorders, including recurrent spontaneous abortion

(RSA) (21), gestational diabetes mellitus (GDM) (22), preterm birth

(PTB) (23), preeclampsia (PE) (24), polycystic ovary syndrome

(PCOS) (25), and endometriosis (26). Further research is needed to

determine the precise role of HMGB1 in normal pregnancy and the

development of reproductive disorders. HMGB1 may serve as a
Frontiers in Immunology 02
valuable biomarker for the early prediction of these diseases and

provide new ideas for their prevention and treatment. This review

provides an overview of the function of HMGB1 and explores

available HMGB1 inhibitors in the female reproductive system.
2 The overview of HMGB1 as a DAMP

HMGB1 is an evolutionarily highly conserved nuclear non-

histone DNA binding protein that was discovered in 1973. The

structure of HMGB1 is shown in Figure 2, and consists of two

consecutive positively charged DNA binding domains, called HMG

A box (9-79 amino acids) and B box (89-162 amino acids), a highly

negatively charged C-terminal tail (186–215 amino acids) and a

short but functionally significant N-terminal region (27).

In the nucleus, the A and B boxes bind to DNA, whereas the C-

terminal region binds to histones. HMGB1 binds to DNA with low

affinity. As a shuttle protein translocating between the nucleus and

cytoplasm, HMGB1 has two nuclear localization signal regions

(NLS1 and NLS2) and one nuclear export signal (NES) (28).

HMGB1 is the most mobile protein in the nucleus, and can pass

through the nucleus and enter the cytoplasm within 1-2 seconds (3,

29). HMGB1 is transferred into the extracellular environment

through two different mechanisms (1): Active secretion: Immune

cells and some other cells like epithelial cells and endothelial cells

can actively secrete HMGB1 when they are stimulated by various

factors (30–33). These factors include lipopolysaccharide (LPS),

pathogen infections, and endogenous host stimuli (34, 35). This

active release of HMGB1 can occur through two models. In one

model, the cells with stimuli directly secrete HMGB1 into the

extracellular space (36). In the other model, HMGB1 is packaged

into intracellular vesicles, such as exosome. These vesicles then fuse

with the cell membrane, leading to the release of HMGB1 outside

the cell (37) (2). Passive release: HMGB1 can also be passively

released from various types of cell death in response to different

stimuli or damages. These types of cell death include necrosis,

necroptosis, apoptosis, autophagy-dependent cell death, NETosis,

pyroptosis, PANoptosis and ferroptosis (38–44). Extracellularly,

HMGB1 participates in inflammatory response as DAMPs,

thereby, playing a role in the occurrence and development of

various physiological processes and diseases (45). The B box of

HMGB1 is a functional domain that recognizes pattern recognition

receptors (PRRs) and can induce macrophages to secrete

proinflammatory cytokines (6). In contrast, A box can antagonize

the activity of cytokines, and A box alone can act as a competitive

antagonist of HMGB1 and inhibit the activity of HMGB1 (46).

HMGB1 contains three cysteine residues at amino acids C23,

C45, and C106 (47). C23 and C45 are located in A box, where a

disulfide bond can be formed between them, and C106 is located in

B box (48). The redox state of these three cysteines determines

whether HMGB1 has three redox forms that can regulate the

extracellular activity of HMGB1 (47). Fully reduced HMGB1 (fr-

HMGB1) has three conserved cysteines containing thiol groups that

can form a complex with other chemokines, such as CXCL12 and

stimulate leukocyte recruitment through the CXCR4 receptor (49).

Partially reduced HMGB1 called disulfide bond HMGB1 (ds-
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HMGB1), has a disulfide bond between C23 and C45, which can

trigger inflammatory responses via TLR2/4 or other receptors such

as RAGE and TLR9 (50, 51). Completely oxidized HMGB1 (ox-

HMGB1) has no immunological competence because it cannot

activate macrophages or dendritic cells (52–54). In addition,

HMGB1 is also subject to various types of post-translational

modifications (PTMs), including acetylation, methylation,

phosphorylation, N-glycosylation, phosphorylation, and ADP-

ribosylation, which determine their subcellular localization and

biological activity (27).

HMGB1 released outside cells binds to cell surface receptors on

target cells as a DAMP (6). To date, a large number of studies have

reported the related receptors of HMGB1, including toll-like

receptors (TLR) 2-4/7/9, the receptor for advanced glycation end

products (RAGE), integrin, cluster of differentiation 24 (CD24), T-

cell immunoglobulin and mucin-3 (TIM3) and C-X-C chemokine

receptor type 4 (CXCR4) (49, 55–57). So far, TLR4 and RAGE have

been extensively studied and proven to be specific HMGB1

receptors in a large number of studies.HMGB1 combined with

RAGE or TLR4 can activate a variety of signaling pathways,

including the mitogen-activated protein kinase (MAPK) signaling

pathway to mediate the occurrence of immune reactions such as

autophagy (58), pyroptosis (59) and apoptosis (60) or the

amplification of inflammation, thus playing a crucial role in
Frontiers in Immunology 03
diabetes, epilepsy, tumor and other diseases (3). Similarly,

HMGB1 also plays a role in normal pregnancy and disease in

female reproductive system by interacting with its receptors.
3 The role of HMGB1 in
normal pregnancy

3.1 HMGB1 facilitates embryo implantation

Embryo implantation occurs when a fertilized egg attaches to

the uterine lining and begins to grow (61). Various factors,

including hormones, growth factors, and cytokines regulate the

process of embryo implantation, enabling the embryo to connect

with the maternal blood supply and receive the nutrients and

oxygen required for grow (62). Successful implantation requires

the synchronization of blastocysts with implantation ability and the

uterus in a receptive state (63). Implantation failure is an important

factor leading to pregnancy failure. There are three main reasons for

implantation failure: insufficient uterine receptivity, problems with

the embryo itself, and systemic causes (63).

In rodents, specific changes occur in the uterus during the pre-

implantation period. These changes are divided into three stages:

prereceptive, receptive, and nonreceptive stages, corresponding to
FIGURE 1

The Function of HMGB1 in Female Reproductive System. HMGB1 is involved in fetal development and embryo implantation, as well as a variety of
diseases in female reproductive system, such as preeclampsia, preterm birth, unexplained recurrent spontaneous abortion, gestational diabetes
millutus, polycystic ovary syndrome, endometriosis.
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gestation day (GD) 2&3, GD4, and GD5 in mice. On GD3, the

uterus is not yet ready for implantation due to low progesterone(P4)

levels. On GD4, with increased progesterone and estrogen secretion,

the uterus becomes acceptable and blastocysts can successfully

implant. On GD5, the uterus becomes nonreceptive again (64,

65). To examine the spatiotemporal expression of Hmgb1 in

uterus during the pre-implantation period, Aikawa S et al.

performed in situ hybridization using digoxigenin. On GD1-3,

Hmgb1 expression is predominantly localized in epithelial cells

with some stromal cell localization on GD3. In stroma cells, Hmgb1

signals are primarily observed on GD4&5. Western blotting results

show that HMGB1 protein levels decrease with pregnancy

progression as assessed on GD4,8&16. The specific spatial and

temporal expression of Hmgb1 at this stage suggests that it plays an

essential role in the pre-implantation period (17). Besides, HMGB1,

estrogen, and progesterone show regular spatial and temporal

expression characteristics during implantation period (17).

Progesterone signaling through progesterone receptor (PR)

regulates decidualization and endometrial homeostasis by

promoting the thickening of the endometrium, inhibiting uterine

contraction and regulating the immune system (66–68). Nuclear

HMGB1 contributes to successful blastocyst implantation by

interregulating with the P4-PR signaling pathway (17, 69). It has

been observed that when the Hmgb1 gene is knockout, the levels of

the P4-responsive gene Hoxa10 in the stromal cells are significantly
Frontiers in Immunology 04
decreased, thus resulting in reduced efficiency of P4-PR signal

transduction (17). This highlights the vital role HMGB1 plays in

regulating the P4-PR signaling pathway, which is crucial for

successful blastocyst implantation. Additionally, it has been noted

that HMGB1 influences the proliferation and differentiation of

uterine stromal cells by targeting various proteins such as bone

morphogenetic protein (Bmp2), kruppel-like factor 5 (Klf5), cAMP,

as well as the G1 phase cell cycle regulator Cyclin D3 (Ccnd3) (16).

This emphasizes the multifaceted role nuclear HMGB1 plays in

regulating various aspects of blastocyst implantation and signifies

its importance in the reproductive process.

Decidualization is the process by which endometrial stromal

cells differentiating into decidual stromal cells during early

pregnancy, and is accompanied by changes in the immune

microenvironment at the maternal-fetal interface. Decidualization

plays an extremely important role in embryo implantation,

pregnancy establishment and maintenance, and delivery initiation

(70). The expression of HMGB1 plays a crucial role in this process.

The reduction in HMGB1 expression leads to a cascade of events

that inhibits the expression of Bmp2, resulting in the down-

regulation of prolactin family 8, subfamily a, member 2

(Prl8a2), an important marker produced by decidual cells.

Consequently, uterine stromal cells cannot perform the necessary

decidual response, which can ultimately affect further

embryonic development (16). In addition to its role in uterine
FIGURE 2

The structure of HMGB1. HMGB1 consists of HMG A box (9-79 amino acids), B box (89-162 amino acids), a highly negatively charged C-terminal tail
(186-215 amino acids) and a short N-terminal region. The A and B boxes in the nucleus can bind DNA, and the C-terminal region can bind histones.
HMGB1 has two nuclear localization signal regions (NLS1 and NLS2) and one nuclear export signal (NES). HMGB1 has three cysteine residues at
amino acids C23, C45, and C106. C23 and C45 are located in A box, while C106 is located in B box. The redox state of these three cysteines
determines that HMGB1 has three redox forms: (1) Fully reduced HMGB1 (fr-HMGB1) can bind to CXCL12 and then stimulate leukocyte recruitment
through the CXCR4 receptor. (2) Partially reduced HMGB1 called disulfide bond HMGB1 (ds-HMGB1) can trigger inflammatory responses via
receptors including RAGE and TLRs. (3) Completely oxidized HMGB1 (ox-HMGB1) has no known cytokine activity.
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decidualization, HMGB1 also aids in blastocyst implantation by

limiting macrophage accumulation and attenuating inflammatory

responses in the endometrium. Hmgb1-deficient mice have been

found to have higher pre-implantation levels of Ccl2 and Csf1, both

of which are involved in priming macrophages (17). This ultimately

leads to an increase in pre-implantation macrophage accumulation

and inflammatory responses. However, it is important to note that

the role of HMGB1 in blastocyst implantation is complex, as the

elevated expression of HMGB1 in endometrial epithelial cells can

decreases the adhesion ability of epithelial cells, thus affecting

blastocyst implantation, which is one of the pathogenic

mechanisms of recurrent implantation failure (71). Therefore, the

precise regulation of HMGB1 expression is critical for successful

embryo implantation.
3.2 HMGB1 contributes to fetal
development: since most of information is
related to fetal tissue development

The role of HMGB1 in fetal development is multifaceted and

occurs at various stages of gestation. Both endogenous and

exogenous HMGB1 affect normal early embryonic development

(72). Through its ability to regulate mitochondrial autophagy in the

cytoplasm, HMGB1 facilitates cell proliferation and differentiation,

thereby aiding in embryo development (73). Interestingly, HMGB1

is found in mouse oocytes and embryos, and its gene expression

potentially plays a role in controlling apoptosis during

preimplantation via the p53 signaling pathway (72). Bagherpoor

et al. found the downregulation of HMGB1 in undifferentiated

pluripotent human embryonic stem cells (hESCs) did not affect cell

pluripotency. However, in differentiated hESCs, the downregulation

of HMGB1 results in decreased telomerase activity, reduced cell

proliferation, increased apoptosis, and decreased differentiation to

the neural ectodermal lineage (74). Overall, HMGB1 is essential for

embryonic development and supports cell growth and

differentiation. In addition, HMGB1 protects preimplantation

embryonic development by decreasing the expression of Bak and

Casp3 genes involved in apoptosis (72, 75).

HMGB1 also promotes the development of the nervous system

(19). It has been reported that HMGB1 knockdown in zebrafish

embryos leads to forebrain developmental defects in the forebrain

due to increased Wnt/b-catenin expression (76). Consistent with these

findings, another study showed that HMGB1-dependent CXCL12/

CXCR4 signaling pathway is present in the developing mammalian

central nervous system (CNS). In addition, a significant reduction in

receptor RAGE in the CNS of HMGB1 knockdown mice was

accompanied by Wnt/b-catenin overexpression, leading to the

downregulation of several developmental factors. These factors

include several neurogenesis factors (e.g. Ascl1, Neurod1, Sox2, Tbr2

and Bcl2), developmental factors (e.g. Pax6, Shh, Foxg1 and Emx2) and

differentiation factors (BMP2, BMP4 and Tgf1). The decreased

expression of these factors leads to increased neuronal apoptosis and

decreased proliferation (77). These findings demonstrated that

HMGB1 is a key regulator of embryonic brain development.
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Moreover, HMGB1 is a crucial factor in the growth and

development of bone tissues and limbs. HMGB1 accumulates in

the hypertrophic chondrocytes on the growth plate and is then

transferred from the cell nucleus to the cytoplasm. During the early

stages of cartilage maturation, it is secreted. By acting as a

chemotactic factor, it attracts osteoclasts, osteoblasts, and

endothelial cells to invade the primary ossification center, thereby

promoting intramembranous ossification within the cartilage (78).

This promotes the formation of new bone tissue and contributes to

the proper development of limbs.

Furthermore, HMGB1 exerts pro-angiogenic effects by inducing

MAPK/ERK1/2 activation, cell proliferation, and chemotaxis in

endothelial cells from different sources (79, 80). To prove

this conclusion, Mitola et al. demonstrated this conclusion

by implanting HMGB1-loaded alginate beads on chick

chorioallantoic membranes at a developmental stage of 11 days

(80). However, the current conclusion lacks evidence in rodent and

human embryonic development. Interestingly, the expression of

HMGB1 and the receptor RAGE was also observed in dental cell

types in the late embryonic stage of rats, indicating that HMGB1

may also promote tooth development (81). In general, current

research suggests that HMGB1 plays a crucial role in embryonic

development at various stages and in successful pregnancy.

However, more research is required to fully understand the

complex interactions between HMGB1 and other factors that

contribute to successful early life development.
4 The role of HMGB1 in female
reproductive system diseases

In this section, we will discuss the role of HMGB1 in various

conditions that influence female reproductive health by spanning

both gynecological disorders and pregnancy-related complications.

We aim to present a comprehensive landscape of HMGB1’s role

across a timeline that begins prior to conception with issues

affecting fertility, such as polycystic ovary syndrome and

endometriosis, and extends through varying stages of pregnancy,

encapsulating pregnancy complications like unexplained recurrent

spontaneous abortion, preeclampsia, gestational diabetes mellitus,

and preterm birth. We hope a chronological approach aids in

building a comprehensive understanding of the omnipresence of

HMGB1’s role throughout the female reproductive journey.
4.1 Polycystic ovary syndrome

Polycystic ovary syndrome (PCOS) is a common condition

affecting the female reproductive system. It can cause infertility and

complications during pregnancy, and affects the physical and mental

health of 4%-20% of women of reproductive age globally (82, 83). The

main clinical manifestations of PCOS include irregular menstruation

(hypomenorrhea or amenorrhea), androgen excess, and multiple

ovarian cysts, often accompanied by insulin resistance (IR), obesity,
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type 2 diabetes, and cardiovascular disease (83, 84). It has also been

suggested that inflammation plays an important role in the

pathogenesis of PCOS (85). As a molecule associated with several

inflammatory diseases, HMGB1 is elevated in both the peripheral

blood and follicular fluid of women with PCOS, particularly those

with insulin resistance, compared with non-PCOS women (25, 86–

90). During the development and maturation of granulosa cells (GC),

HMGB1 interacting with TLRs, and may be involved in ovarian

innate immunity and ovarian follicle maturation regulated by follicle-

stimulating hormone (FSH) (91). However, excess extracellular

HMGB1promotes autophagy of granulosa cells (86). Research has

shown that inhibition of HMGB1 or the TLR4/NF-kB signaling

pathway can improve inflammatory PCOS with insulin resistance

(25). Further research is required to understand the mechanisms

underlying the relationship between inflammation and PCOS.
4.2 Endometriosis

Endometriosis refers to the growth of endometrium-like tissue

outside the uterine cavity, such as in the ovaries and the peritoneum

(92). Approximately 10% of women of the reproductive age are

affected by endometriosis (93). Endometriosis can cause a range of

symptoms, including dysmenorrhea, deep pelvic pain, and

infertility (94, 95). Although the underlying cause of

endometriosis is not fully understood, but inflammation is

believed to play a major role in its development (96). Researchers

have found that HMGB1 is present in the endometrial cells of

women with endometriosis, compared to those who do not (97).

HMGB-1 may contribute to the development of endometriosis in

part by regulating the inflammatory response and autophagy (97).

HMGB1 expression is significantly increased during the secretory

phase of the menstrual cycle (31). The extracellular secretion of

HMGB1 appears to enhance the proliferation of endometrial

stromal cells, contributing to the development of inflammatory

responses in the endometrium (98). This effect can be inhibited by

TLR4 antagonists and NF-kB inhibitors, suggesting that the

HMGB1-TLR4-NF-kB pathway is involved in the development of

aseptic inflammation in endometrial tissue (98). These findings

were supported by subsequent studies confirming the role of

HMGB1 in the pathogenesis of endometriosis (99, 100). The

study conducted by Cao et al. not only localized HMGB1 in

endometriosis patients but also found that its circulating levels

were higher in these patients than in women without the disease,

indicating its potential as a biomarker for detecting endometriosis

(101). The researchers further examined the relationship between

HMGB1 and glycolysis-related indicators pyruvate kinase M2

(PKM2) and hexokinase 2 (HK2). They discovered a positive

correlation between their levels with HMGB1 expression,

suggesting that HMGB1 may play a role in the pathogenesis of

endometriosis by affecting glycolysis (26). In addition, the effects of

HMGB1 on endometriosis may be linked to pyroptosis (102).

However, it was also observed that HMGB1 was not significantly

upregulated in patients with severe endometriosis (103). Therefore,

more research is necessary to determine the viability of HMGB1 as a

biomarker for endometriosis.
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4.3 Unexplained recurrent
spontaneous abortion

Recurrent spontaneous abortion (RSA) is a common pregnancy

complication of two or more failed clinical pregnancies (104). This

complication involves multiple factors, such as chromosomal

abnormalities, age, antiphospholipid syndrome, uterine

malformations, thrombosis, hormonal or metabolic disorders,

infections, autoimmunity, sperm quality, and lifestyle issues (105).

Despite extensive studies, no apparent causative factor exists for

unexplained recurrent spontaneous abortion (URSA) in 50% to

75% of the patients diagnosed with RSA (106). Recent research has

indicated that underlying immunological alterations may

contribute to the development of URSA. In addition, studies have

shown that abnormal expression of HMGB1 may be closely

associated with the development of URSA.

Jin et al. found that individuals with HMGB1 rs2249825C/G

polymorphism had a higher risk of RSA and also experience higher

expression of HMGB1 in the chorionic villi. This indicates a strong

association between the two factors (107). Patients with URSA have

higher levels of serum HMGB1 compared to normal pregnant

women (21, 108, 109), which is also observed in patients with PE.

In patients with URSA, the maternal-fetal interface is disorganized

with cell arrangement and nuclear rupture issues. There were more

infiltrating cells in the chorionic villi and decidua than in normal

pregnancies (21, 108, 109). The co-localization of HMGB1 with

CD45 and Vimentin, but not CK7, suggests that increased HMGB1

at the maternal-fetal interface is likely due to immune cell secretion

and passive release from ecdysteroid stromal cells following

necrosis, rather than chorionic epithelial cells (108). Further

studies have shown that the immune cells that secrete HMGB1

are predominantly macrophages (21). In both mouse models and

human decidua tissues, the receptors RAGE, TLR2, and TLR4 were

upregulated in the decidua of the URSA group, along with elevated

expression of HMGB1. As a result, the expression levels of the

inflammasome NLRP-3 and the pyroptosis-related proteins

caspase-1 and GSDMD were also increased. These findings

suggest that the role of HMGB1 goes beyond merely amplifying

the inflammatory response, and it plays a significant role in the

pathogenesis of URSA by inducing pyroptosis. Therefore, HMGB1

amplifies the inflammatory response not only by interacting with

RAGE, TLR2, and TLR4 receptors, thereby activating the NF-kB
signaling pathway, but also by inducing pyroptosis during the

pathogenesis of URSA (21).

Furthermore, the use of HTR8/SVneo cells induced with

lipopolysaccharide (LPS) as an in vitro model provides an

opportunity for researchers to investigate the impact of

inflammation on the uteroplacental interface. The experiment

conducted by Zhou et al. revealed that the exposure to LPS has a

significant impact on the ability of HTR8/SVneo cells to grow and

move, which are essential functions for a healthy pregnancy.

However, HMGB1 knockdown restores these two abilities and

blocks the elevated expression of Beclin1 and LC3 in HTR-8/

SVneo cells after LPS induction (110). This suggests that HMGB1

may also be involved in the development of miscarriage through the

induction of autophagy. In summary, an unusual increase in
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1238785
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ren et al. 10.3389/fimmu.2023.1238785
HMGB1 expression in the maternal-fetal interface and circulatory

system can affectseveral crucial processes in pregnancy, ultimately

increasing the likelihood of miscarriage. To decrease the occurrence

of URSA and improve the birth rate in women of childbearing age,

it is crucial to conduct further studies on the precise mechanism by

which HMGB1 mediates URSA.
4.4 Preeclampsia

Preeclampsia (PE) is a common characteristic complication of

pregnancy, which complicates 2% to 4% of pregnancies globally and

causes approximately 46,000 maternal deaths and 500,000 fetal and

new-born deaths annually (111). It usually occurs after 20 weeks of

gestation and often presents with hypertension, proteinuria,

thrombocytopenia, liver and kidney function damage, headaches

and other symptoms (111, 112). To date, the etiology and

pathogenesis of PE have not been fully elucidated. According to

the current research, the main factors involved in the pathogenesis

of PE include insufficient recasting the uterine spiral arterioles,

disturbance of immune regulation, excessive activation of

inflammation, damage of vascular endothelium and genetic

factors (111).

Numerous studies have demonstrated that women with PE have

elevated levels of HMGB1 in multiple tissues, including plasma,

placenta, trophoblast tissue, fetal membrane, and decidua (113–

115), particularly those with severe or early-onset PE (116, 117).

HMGB1 likely contributes to the pathogenesis of PE through

several signaling pathways. For instance, it has been discovered

that the levels of HMGB1 are significantly higher in the micro- and

nano-vesicles of PE placental explants, which cause endothelial cell

activation (118). Additionally, hypoxia-induced high levels of

HMGB1 secretion in trophoblast tissue can lead to increased

endothelial cell permeability through the TRL4/caveolin-1 (Cav-1)

pathway, which may be a key factor in the clinical manifestations of

PE hyperalbuminuria and systemic edema (114). Besides, elevated

plasma HMGB1 stimulates group 3 innate lymphoid cells (ILC3)

differentiation and increases IL-17 production (119). Moreover, in

PE patients, the binding of HMGB1 to RAGE enhances the NF-kB
signaling pathway, which leads to the elevation of pro-

inflammatory cytokines such as IL-6 and TNF-a (120–122). It is

known that IL-6 may be involved in the overexpression of placental

sFlt-1 (123), and TNF-a can reduce the level of endothelial nitric

oxide synthase (124), and the combination of these two causes

excessive inflammatory reaction and vascular dysfunction,

increased circulating endothelial particles and thrombophilia in

the PE mother. Therefore, it can be inferred that HMGB1 is an

important mediator for the promotion of PE generation.

Through RAGE-NF-kB-IL-6/CCL2 signaling pathway,

HMGB1 has been shown to have a critical role in stimulating

adipocytes, leading to the further development of inflammation in

pregnant women with PE (125). According to Tangerås et al., the

syncytial layer is the most important HMGB1-TLR4 activation site,

and elevated HMGB1 in the syncytial layer of patients with PE

induces TLR4-dependent IL-8 release through the inflammatory

isoform of HMGB1 in placental explants and trophoblasts (126).
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This plays a significant role in the occurrence of local placental

inflammation. In addition, hypoxic trophoblast HMGB1 can also

induce human umbilical vein endothelial cells (HUVEC) to

produce cytotoxicity and leukocyte arrest, as well as higher

expression of cell adhesion molecules (VCAM-1 and ICAM-1),

thereby causing cell damage (127). These findings suggest that

HMGB1 plays a vital role in the development of PE, and that it is

possible to prevent and treating PE through anti-HMGB1 therapy.

Further research in this area is necessary to fully understand the role

of HMGB1 in PE and its potential as a therapeutic target.
4.5 Gestational diabetes mellitus

Gestational diabetes mellitus(GDM) is the most common

gestational metabolic disease, which refers to diabetes mellitus

with normal glucose metabolism before pregnancy and develops

only during pregnancy (128). GDM is a significantly harmful

disease to both the mother and fetus. It is associated with a high

risk of many adverse pregnancy outcomes, such as pre-eclampsia

(PE), infection, fetal growth restriction, giant fetus, miscarriage, and

postpartum type 2 diabetes (128, 129). Exploring the pathogenesis

and treatment of GDM has always had an important place in

obstetrics and gynecological research.

Using a cross-sectional comparison of the plasma levels of

HMGB1 in 75 pregnant women with positive glucose tolerance

tests and 48 pregnant women with negative glucose tolerance tests,

Giacobbe et al. found that circulating levels of HMGB1 were higher

in patients with GDM than in women with normal pregnancies

(130). However, another study that compared plasma HMGB1

levels in GDM patients and normal pregnant women did not

support this finding. No significant correlation were observed

between HMGB1 levels and GDM. Surprisingly, another study

found that maternal age was significantly associated with HMGB1

in patients with GDM but not in the normal pregnancy group (131).

Thus, maternal age, a common risk factor for GDM, may influence

the incidence of GDM by interacting with HMGB1. Similarly,

Santangelo et al. also discovered no significant difference in the

plasma HMGB1 levels between pregnant women with GDM and

those with normal glucose tolerance. However, they observed an

increase in the expression of HMGB1 protein expression in the fetal

membrane tissue of patients with GDM. It is associated with high

expression of VPAC2 (a VIP receptor) and RAGE receptors in the

omental adipose tissue (22). The interaction between HMGB1 and

RAGE has been previously shown to result in the secretion of

inflammatory cytokines (132), suggesting that the increased

expression of HMGB1 in patients with GDM may contribute to

the chronic inflammatory state, which is relevant to obesity and

insulin resistance. Further, studies are still needed to explore the

relationship between HMGB1 and the pathogenesis of GDM.
4.6 Preterm birth

Preterm birth(PTB) is a term used to describe delivery that

occurs before the 37th week of gestation (133). The global preterm
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birth rate is about 10% (134, 135). Approximately 70% of preterm

birth are spontaneous, while 30% are related to maternal and/or

fetal conditions (136, 137). Preterm premature rupture of

membrane (pPROM) refers to the rupture of the amniotic sac

(membranes) before 37 weeks’ gestation, which contributes to 30-

40% of all preterm birth (137). Studies have shown that intra-

amniotic infection and/or inflammation have a significant causal

relationship with preterm birth (138, 139). In recent years, several

studies have demonstrated elevated levels of HMGB1 in the

amniotic fluid and plasma of patients with preterm birth

compared to those with normal pregnancies (138, 140–145).

HMGB1 induces preterm birth in mouse models (146). These

findings suggest that HMGB1 may serve as a new non-invasive

biomarker for PTB diagnosis.

In normal pregnancies, HMGB1 levels in the amniotic fluid

(AF) are not regulated by gestational age (GA) and are higher at

delivery than before delivery (140). HMGB1 promotes immune

activation at the fetal-maternal interface, thereby facilitating

delivery. Elevated levels of HMGB1 have been observed in the

serum of mothers with chorioamnionitis-associated preterm birth

(147). Intra-amniotic inflammation induces upregulation of

HMGB1 expression and release of HMGB1 in the amnion

through inhibition of miR-548 and miR-199a-3p (148, 149). In

aseptic inflammation-associated preterm delivery, it was found that

HMGB1 was released into the amniotic fluid after undergoing

acetylation modification. Additionally, RAGE and TLR2/4 showed

a dose-dependent increase in response to HMGB1, ultimately

activating the p38MAPK signaling pathway. As a result, the

expression of pro-inflammatory cytokines such as IL-1b, IL-6, IL-
8, and TNF-a was significantly elevated, promoting inflammation

unrelated to infection but somewhat related to aging (142). Previous

research has shown that HMGB1 can promote inflammation in the

chorioamnion by increasing the mRNA expression and protein

concentration of NLRP3 and NOD2 while at the same time

mediating the release of mature IL-1b and IL-6 by activating

caspase-1 (146). Both IL-1b and IL-6 have been found to play

crucial roles in the development of inflammation and can ultimately

lead to preterm birth and delivery (150–152).

Furthermore, research has demonstrated that HMGB1 plays a

crucial role in promoting the proliferation and activation of iNKT

cells during metaphase. Once activated, these iNKT cells act by

secrete a range of cytokines and lysis granules, such as IFN-g,
perforin and granzyme B, which may cause damage to both fetal

and maternal tissues. As a result, the release of HMGB1 is more

enhanced, leading to further inflammation and the promotion of

PTB development (153). In addition, one study found that the

mRNA expression and protein levels of several molecules, including

HMGB1, RAGE, NF-kB/p65, matrix metalloproteinase (MMP)-9,

and MMP-2, were significantly increased in the HMGB1-RAGE

pathway in pregnant women who had experienced pPROM

compared with those who had experienced normal full-term

pregnancies. This suggests that the nucleoplasmic translocation of

HMGB1 in pPROM placentas may cause it to bind to its receptor

RAGE, which then stimulates the activity of NF-kB/p65. The
activation of NF-kB/p65 triggers the release of MMP-9 and

MMP-2. Therefore, HMGB1 is implicated in the progression of
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pPROM (154). According to the above researches, a significant

relationship exists between HMGB1 and PTB pathogenesis. The

prevention and treatment of PTB by targeting anti-HMGB1 has

gradually become more encouraging.

The function of HMGB1 in the female reproductive system is

twofold. It has been discovered to play a crucial role in the

development of various conditions such as preeclampsia, preterm

birth, gestational diabetes mellitus, unexplained recurrent

spontaneous abortion, polycystic ovary syndrome, and

endometriosis. With such a broad range of connections, HMGB1

may act as a biomarker for anticipating the beginning of these

ailments. The early detection of HMGB1 levels can help prevent the

onset of these health conditions in women through anti-

HMGB1 treatment.
5 HMGB1-targeted therapeutic agents

5.1 Glycyrrhizin

Glycyrrhizin (GL) is a natural compound that is commonly

found in large quantities in the roots and rhizomes of Glycyrrhiza

glabra (155). It is a triterpene diol conjugate (156). Specifically, it

has been discovered that GL forms a direct bond with HMGB1. This

occurs when the GL interacts with two shallow concave surfaces

that are created by the two arms of the two HMG boxes (157). GL

can inhibit HMGB1-TLR4-NF-kB mRNA expression level and has

physical interaction with HMGB1 and TLR4 observed in molecular

docking (158). This makes it a valuable tool for the treatment of

various diseases associated with HMGB1. Initially, GL was used

primarily for the treatment of chronic hepatitis. Still, it is becoming

increasingly significant in treating various other diseases such as

oncology, lung diseases, cardiovascular diseases, sepsis, and more

(159–165). Moreover, GL has shown great potential in treating

pregnancy-related complications, making them a valuable tool for

maternal and fetal health.

In patients with PE, the placenta is defective and trophoblast

cells are hypoxic (166), which leads to increased secretion of

HMGB1 by hypoxic trophoblastic tissues. The secretion of

HMGB1 induces endothelial cell hyperpermeability via the TLR4/

caveolin-1 pathway. Consequently, this leads to the development of

generalized edema and hyperuria in patients with preeclampsia

(114). However, according to Jiang et al., the concentration of 200

mg/ml of GL was found to reduce the permeability of hypoxic JEG-

3-CM-induced human umbilical vein endothelial cells (HUVEC) by

89.8% (114). This finding suggests that GL can reduce endothelial

cell permeability in patients with PE.

GL has a potent anti-inflammatory effect and can be used to

treat pregnancy-related issues. Excessive glucose can cause

inflammation in trophoblast cells, leading to increased HMGB1

expression. HMGB1 interacts with TLR4, resulting in the secretion

of IL-6 and IL-8, which slows down trophoblast migration.

However, GL can reverse the above effect caused by excessive

glucose (167). Furthermore, in rodent models of PE, oral GL

reduces HMGB1 and inflammatory factors including IL-1 and IL-

6, both in serum and in the placenta (121). These results illustrate
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GL reduces inflammation in pregnancy complications by

suppressing HMGB1 release and bioactivity. GL can also block

the process of HMGB1-mediated senescence activation through the

p38MAPK pathway in fetal membranes and placenta of PTB (142).

This is an important finding as it indicates that GL may play a role

in preventing preterm birth. Further studies have been conducted

on the safety of GL administration during pregnancy. One such

study involved the oral gavage of GD10-19 in pregnant rats, which

showed no adverse effects on blood pressure and proteinuria (121).

This indicates that GL is safe for use during pregnancy, at least in

rats. Further research is necessary before recommending its use in

other animals or humans.
5.2 Recombinant thrombomodulin

Thrombomodulin (TM), also referred to as CD141, is a

glycoprotein found on the surface of endothelial cells (168, 169).

It has a lectin-like domain that can bind to and neutralize HMGB1

(170–172). Recently, recombinant thrombomodulin (rTM), a

commercial form of TM, was found to have anti-inflammatory

effects and to improve body function by inhibiting HMGB1 in

various diseases (173).

TM is highly expressed in placental trophoblast cells during

normal pregnancies (174), and reduced TM expression has been

observed in women with placental defects such as PE and

miscarriage (175). It has been hypothesized that the TM plays a

role in maintaining placental function. Indeed, was discovered that

treating a mouse model of recurrent miscarriage induced by

angiotensin II (Ang II)-related PE with rTM significantly

inhibited multiple pathways mediated by HMGB1. rTM leads to

decreased adverse pregnancy outcomes (176).

In PE, effect of elevated HMGB1 binding to its receptors is the

activation of the HIF-regulated hypoxic stress response through

NF-kB transcriptional upregulation and HIF-1a expression. It also

inhibited placental angiogenesis by reducing placental growth factor

(PlGF) production and enhancing sFlt-1 expression (120). In mice

with pathological pregnancies, the use of rTM hindered the rise of

HMGB1 levels in the blood and the production of pro-

inflammatory cytokines such as IL-6 and TNF-a in the placenta.

Additionally, it decreased the accumulation of HIF-1a protein,

increased PlGF expression in the placenta, and reduced the buildup

of fibrinogen in the placental vagus region (120). Therefore, rTM

ultimately improved the fetal resorption rate and fetal growth

restriction in the recurrent miscarriage model and reduced

symptoms such as hypertension and proteinuria in the PE model

(120, 176, 177). Moreover, rTM is too large to cross the placenta and

affect the fetus (177), making it a promising drug for treating

pregnancy complications such as pre-eclampsia, recurrent

miscarriage, and fetal growth restriction.
5.3 Low molecular weight heparin

Low molecular weight heparin (LMWH) is a commonly used

anticoagulant for treating pregnancy complications such as
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recurrent miscarriage, pre-eclampsia, and fetal growth restriction

(153, 178). Although there is no evidence for the beneficial effects of

heparin in reducing adverse neonatal outcomes (179). This helps to

avoid adverse pregnancy outcomes (180, 181). Recent studies have

shown that LMWH can bind to HMGB1, resulting in a reduced

affinity of HMGB1 for RAGE. This effect may play a role in

protecting the placental function and improving pregnancy (182).

According to Zenerino et al., after 48 hours of LMWH treatment,

the levels of HMGB1, RAGE, IL-6, and TNF-a were found to be

reduced in a physiological placental villous explant model (178).

This finding suggests that LMWH regulates the HMGB1/RAGE

pro-inflammatory axis in human placenta. Moreover, LMWH has

been discovered to hinder the growth of iNKT cells when co-

cultured with APC in the presence of HMGB1 (178). This finding

implies that LMWH may be effective in preventing preterm births

without acute chorioamnionitis. In a mouse model of LPS-induced

PE, LMWH enhanced pregnancy outcomes by reducing iron-

regulator expression and boosting iron absorption (153). Further

investigations are required to determine how heparin improves

pregnancy rates. This is because heparin binds to both HMGB1 and

RAGE (183), making it unclear which molecule is responsible for

the inhibition of the HMGB1-RAGE axis. In addition, it is

important to be cautious when using LMWH during severe PE as

it can stimulate the placental expression and release of sFLT-

1 (184).
5.4 Other agents

The following drugs can also target HMGB1 to provide new

approaches for the treatment of pregnancy-related complications

(Table 1; Supplementary Table 1). Aspirin has potential therapeutic

benefits in treating pregnancy complications such as recurrent

abortions (189). Salicylic acid (SA) has been found to have

binding sites on HMGB1 in a specific domain through nuclear

magnetic resonance (NMR) spectroscopy studies (185).

Acetylsalicylic acid, commonly known as aspirin, is thought to

work by inhibiting HMGB1 through its binding with SA (185).

Aspirin has been shown to reduce expression levels of HMGB1 in

both decidua tissue and peripheral blood in the mouse model of

recurrent miscarriage, as well as decrease expression of receptors

RAGE, TLR2 and TLR4 (21, 109). Magnesium sulfate, as a first-line

drug for PE treatment, can inhibit vascular endothelial cell (VEC)

apoptosis via the miR218-5p/HMGB1 axis (186). MiR-218-5p has

the potential to bind to the 3’-UTR of HMGB1 and can negatively

regulate the expression of HMGB1 (190). Compared with the rats in

the normal group, miR-218-5p expression decreased in the

placental tissues and VECs of the rats in the PE, while HMGB1

increased. Magnesium sulfate can reverse the changes and thus play

a role in treating PE (186). In addition, studies have shown that

Epigallocatechin gallate (EGCG) can reduce the expression of

HMGB1 in hypoxic trophoblast cells in a dose-dependent

manner. This helps to improve the cells’ angiogenic state and

reduce endothelial dysfunction for treating PE (187). A water-

soluble derivative of tanshinone IIA called sodium tanshinone IIA

sulfonate (STS) has been discovered to inhibit the expression and
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TABLE 1 Effects of potential drugs on HMGB1 in the female reproductive system.

Drug Binding with HMGB1 Effect on diseases in female reproductive system Refs

Glycyrrhizin

GL can bind to the two shallow concave surfaces created by
two arms of two HMG boxes.
GL forms hydrogen bonds with amino acid residues of
Arg22, Ala38, Ile34, Lys39 and Phe14 og HMGB1.

Reduces HMGB1 and inflammatory factors including IL-1 and IL-6, both
in serum and in the placenta of preeclampsia
Blocks the process of HMGB1-mediated senescence activation through the
p38MAPK pathway in fetal membranes and placenta of preterm birth

(121,
142,
157,
158)

Recombinant
thrombomodulin

rTM can bind to HMGB1 with a lectin-like domain and
degrade HMGB1.

Hindersd the rise of HMGB1 levels in the blood and the production of
pro-inflammatory cytokines such as IL-6 and TNF-a in the placenta of PE
Decreases the accumulation of HIF-1a protein, increased PlGF expression
in the placenta, and reduced the buildup of fibrinogen in the placental
vagus region of PE

(120,
171,
172)

Low molecular
weight heparin

LMWH binding with HMGB1 changes the secondary
structure of HMGB1 showing the reducing content of b-
pleated sheet while increasing content of a-helix.

Reduces the levels of HMGB1, RAGE, IL-6, and TNF-a in placenta
Reduces iron-regulator expression and boosts iron absorption in PE

(153,
178,
182)

Aspirin Aspirin binds to a specific domain oh HMGB1.
Ameliorates the maternal-fetal interface destruction in unexplained
recurrent spontaneous abortion by reducing the expression HMGB1 along
with its receptors and suppressing pyroptosis activation

(21,
185)

Magnesium
sulfate

–
Inhibits vascular endothelial cell apoptosis via the miR218-5p/HMGB1
axis in PE

(186)

Epigallocatechin
gallate

–
Improves angiogenic state and reduce endothelial dysfunction by reducing
HMGB1 expression in hypoxic trophoblast cells of PE

(187)

Sodium
tanshinone IIA
sulfonate

–

Reverses HMGB1-induced cytotoxicity, leukocyte arrest, as well as the
high expression of cell adhesion molecules including VCAM-1 and ICAM-
1 in PE

(127)

Clarithromycin –
Reduces preterm birth rates and improve neonatal survival in mice with
HMGB1-induced aseptic intra-amniotic inflammation

(188)

Betamethasone –
Restores the normal delivery timing in a PTB model of HMGB1-induced
aseptic intra-amniotic inflammation.

(139)
F
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"-" indicates that there are no available studies or information regarding the specific sites where these drugs bind with HMGB1.
FIGURE 3

HMGB1 has a dual role in female reproductive system. HMGB1 participates in the regulation of many signaling pathways and plays significant roles in
female reproductive system. Under physiological conditions, HMGB1 facilitates embryo implantation and fetal development. As a DAMP, HMGB1
binds to its receptors and activates several pathways such as autophagy, pyroptosis, and release of inflammatory cytokines. These processes
contribute to the pathogenesis of diseases in female reproductive system.
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release of HMGB1 in the hypoxic trophoblast. STS can be absorbed

by the intestine and is capable of reversing HMGB1-induced

cytotoxicity, leukocyte arrest, as well as the high expression of cell

adhesion molecules including VCAM-1 and ICAM-1, which

implies STS has the potential to treat PE (127). Researchers have

discovered that Clarithromycin can extend gestation in mice with

aseptic intra-amniotic inflammation induced by HMGB1. This

results in a reduction of preterm birth rates and helps improve

neonatal survival (188). Besides, there is a study showing that

betamethasone treatment may also prevent preterm birth caused

by HMGB1 (139).
6 Conclusions and perspectives

This review emphasizes the multiple roles of HMGB1 playing in

female reproductive system and some potential HMGB1-targeted

therapies (Figure 3). Under physiological conditions, HMGB1 is

essential for the critical stages of pregnancy, such as uterine

decidualization, embryo implantation, and early fetal

development. HMGB1 also participates in the pathogenesis of

diseases in female reproductive system as a DAMP. Therefore,

HMGB1-targeted drugs may offer new ways to prevent or treat

these diseases. However, more studies are needed to clarify the

following questions (1): The precise mechanism by which HMGB1

plays roles in female reproductive system: Although there has been

much research to explore the function of HMGB1, it’s necessary to

further figure out every node associated with HMGB1and their

connection in female reproductive system. (2) The specific

mechanism of HMGB1-targeted therapies in female reproductive

system: In this review, we refers to some kinds of promising

HMGB1-targeted drugs including glycyrrhizin, recombinant

thrombomodulin, low molecular weight heparin, aspirin and so

on. But many issues related to them are still unclear. What are the

binding targets of these drugs to HMGB1? How do they directly or

indirectly regulate the signaling pathway where HMGB1 is located?

Will they also target other signaling pathways? What are their

administration methods, precautions, and adverse reactions? Is

there any new HMGB1 Targeted therapy?
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