48 research outputs found

    Mitigation of Unmodeled Error to Improve the Accuracy of Multi-GNSS PPP for Crustal Deformation Monitoring

    Get PDF
    High-rate multi-constellation global navigation satellite system (GNSS) precise point positioning (PPP) has been recognized as an efficient and reliable technique for large earthquake monitoring. However, the displacements derived from PPP are often overwhelmed by the centimeter-level noise, therefore they are usually unable to detect slight deformations which could provide new findings for geophysics. In this paper, Global Positioning System (GPS), GLObalnaya NAvigatsionnaya Sputnikovaya Sistema (GLONASS), and BeiDou navigation satellite system (BDS) data collected during the 2017 Mw 6.5 Jiuzhaigou earthquake were used to further exploit the capability of BDS-only and multi-GNSS PPP in deformation monitoring by applying sidereal filtering (SF) in the observation domain. The equation that unifies the residuals for the uncombined and undifferenced (UCUD) PPP solution on different frequencies was derived, which could greatly reduce the complexity of data processing. An unanticipated long-term periodic error term of up to ± 3 cm was found in the phase residuals associated with BDS satellites in geostationary Earth orbit (GEO), which is not due to multipath originated from the ground but is in fact satellite dependent. The period of this error is mainly longer than 2000 s and cannot be alleviated by using multi-GNSS. Compared with solutions without sidereal filtering, the application of the SF approach dramatically improves the positioning precision with respect to the weekly averaged positioning solution, by 75.2%, 42.8%, and 56.7% to 2.00, 2.23, and 5.58 cm in the case of BDS-only PPP in the east, north, and up components, respectively, and 71.2%, 27.7%, and 37.9% to 1.25, 0.81, and 3.79 cm in the case of GPS/GLONASS/BDS combined PPP, respectively. The GPS/GLONASS/BDS combined solutions augmented by the SF successfully suppress the GNSS noise, which contributes to the detection of the true seismic signal and is beneficial to the pre- and post-seismic signal analysis

    Research and development of a pilot project using GNSS and Earth observation (GeoSHM) for structural health monitoring of the Forth Road Bridge in Scotland

    Get PDF
    GeoSHM (GNSS and Earth Observation for Structural Health Monitoring) is a feasibility study project funded under the Integrated Application Promotion (IAP) program of the European Space Agency (ESA) in August 2013. Through integrated use of GNSS, Remote Sensing technologies and environmental data, GeoSHM can offer bridge owners an effective tool to assess the operational conditions of their assets. A reference system that consists of four GNSS receivers and two anemometers was installed on the Forth Road Bridge (FRB) in Scotland. This first stage monitoring system is producing precise 3D real-time displacements under different loading conditions. It can also provide essential land movement information to assess potential threats due to underground water extraction, geo-hazards and other industrial activities. The GeoSHM Feasibility Study has proved that even a small scale monitoring system can make possible for the Bridgemaster of the FRB to fully understand the loading and response effect of the bridge, and identify unusual deformations under extreme weather conditions (wind gust, etc.). Furthermore, EO data has proved to be extremely useful for the subsidence detection, as the SAR interferometry images have shown that there is no significant subsidence of the towers of the FRB or in the surrounding area. Gathering real-time GNSS data has produced continuous and accurate estimation of the displacement time-series of the structure. The issues and gaps identified from GeoSHM FS will form a solid foundation for the next stage development of GeoSHM service – demonstration, which is a two-year project and have started in February 2016. A new consortium of GeoSHM has been formed, focusing on significant refinements to the system reliability, sensor integration, data acquisition, data transmission, data fusion and SHM information extraction. This further developed GeoSHM system will be installed on a few Chinese bridges and the reference monitoring system on the FRB will be expanded as a pre-operational system

    Effects of dietary sodium butyrate on growth performance, immune function, and intestinal microflora of Chinese soft-shelled turtle (Pelodiscus sinensis)

    Get PDF
    The Chinese soft-shelled turtle (Pelodiscus sinensis) has become increasingly susceptible to frequent diseases with the intensification of farming, which severely impacts the development of the aquaculture industry. Sodium butyrate (SB) is widely used as a feed additive due to its promotion of growth, enhancement of immune function, and antioxidative properties. This study aimed to investigate the effects of dietary SB on the growth performance, immune function, and intestinal microflora of Chinese soft-shelled turtles. A total of 300 Chinese soft-shelled turtles (mean weight: 11.36 ± 0.21g) were randomly divided into four groups with three parallel sets in each group. Each group was fed a diet supplemented with 0%, 0.005%, 0.01%, or 0.02% SB for 60 days. The results demonstrated an upward trend in weight gain rate (WGR) and specific growth rate (SGR) with increasing SB supplementation, and the experimental group fed with 0.02% SB showed a significant increase in WGR and SGR compared to other groups (P< 0.05). These levels of SB also decreased the levels of feed conversion ratio (FCR) and the total cholesterol (TC) content of Chinese soft-shelled turtles, and the 0.02% SB was significantly lower than that of other groups (P< 0.05). The activity of complement protein in vivo increased with increases in SB content, and the activities of complement C3 and C4 reached the highest level with 0.02% SB. The species abundance of the experimental group D fed with 0.02% SB was significantly higher than that of other groups (P< 0.05). Furthermore, the relative abundance of Clostridium sensu stricto 1 was significantly increased with 0.02% SB (P< 0.05). In conclusion, adding 0.02% SB to the diet improves the growth performance, feed digestion ability, and intestinal microbiota of Chinese soft-shelled turtles

    Reduction of Secondary Transmission of SARS-CoV-2 in Households by Face Mask Use, Disinfection and Social Distancing: A Cohort Study in Beijing, China

    Get PDF
    Introduction Transmission of COVID-19 within families and close contacts accounts for the majority of epidemic growth. Community mask wearing, hand washing and social distancing are thought to be effective but there is little evidence to inform or support community members on COVID-19 risk reduction within families. Methods: A retrospective cohort study of 335 people in 124 families and with at least one laboratory confirmed COVID-19 case was conducted from 28 February to 27 March 2020, in Beijing, China. The outcome of interest was secondary transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within the family. Characteristics and practices of primary cases, of well family contacts and household hygiene practices were analysed as predictors of secondary transmission. Results: The secondary attack rate in families was 23.0% (77/335). Face mask use by the primary case and family contacts before the primary case developed symptoms was 79% effective in reducing transmission (OR=0.21, 95% CI 0.06 to 0.79). Daily use of chlorine or ethanol based disinfectant in households was 77% effective (OR=0.23, 95% CI 0.07 to 0.84). Wearing a mask after illness onset of the primary case was not significantly protective. The risk of household transmission was 18 times higher with frequent daily close contact with the primary case (OR=18.26, 95% CI 3.93 to 84.79), and four times higher if the primary case had diarrhoea (OR=4.10, 95% CI 1.08 to 15.60). Household crowding was not significant. Conclusion: The study confirms the highest risk of transmission prior to symptom onset, and provides the first evidence of the effectiveness of mask use, disinfection and social distancing in preventing COVID-19. We also found evidence of faecal transmission. This can inform guidelines for community prevention in settings of intense COVID-19 epidemics

    The Epitope and Neutralization Mechanism of AVFluIgG01, a Broad-Reactive Human Monoclonal Antibody against H5N1 Influenza Virus

    Get PDF
    The continued spread of highly pathogenic avian influenza (HPAI) H5N1 virus underscores the importance of effective antiviral approaches. AVFluIgG01 is a potent and broad-reactive H5N1-neutralizing human monoclonal antibody (mAb) showing great potential for use either for therapeutic purposes or as a basis of vaccine development, but its antigenic epitope and neutralization mechanism have not been finely characterized. In this study, we first demonstrated that AVFluIgG01 targets a novel conformation-dependent epitope in the globular head region of H5N1 hemagglutinin (HA). By selecting mimotopes from a random peptide library in combination with computational algorithms and site-directed mutagenesis, the epitope was mapped to three conserved discontinuous sites (I-III) that are located closely at the three-dimensional structure of HA. Further, we found that this HA1-specific human mAb can efficiently block both virus-receptor binding and post-attachment steps, while its Fab fragment exerts the post-attachment inhibition only. Consistently, AVFluIgG01 could inhibit HA-mediated cell-cell membrane fusion at a dose-dependent manner and block the acquisition of pH-induced protease sensitivity. These results suggest a neutralization mechanism of AVFluIgG01 by simultaneously blocking viral attachment to the receptors on host cells and interfering with HA conformational rearrangements associated with membrane fusion. The presented data provide critical information for developing novel antiviral therapeutics and vaccines against HPAI H5N1 virus

    Effects of Aqua-Dispersing Nano-Binder on Clay Conductivity at Different Temperatures

    No full text
    Soil nutrients are the basis of ecological remediation. Soil amendments can form a reticular membrane structure on the soil surface to increase nutrient storage and alleviate nutrient imbalances, and are affected by the environmental temperature. At present, the qualitative evaluation of the effect of soil amendment is mainly based on vegetative growth. However, with the increasing use of soil amendments, how to conveniently and quantitatively evaluate the impact of soil amendments on ecological restoration under different temperature conditions from the perspective of soil urgently needs to be solved. Therefore, a new soil amendment named aqua-dispersing nano-binder (ADNB) and silty clay that is commonly used for ecological restoration in South China were used as research subjects, and the important soil nutrient storage capacity—soil conductivity index—was used as the starting point to find solutions to the above problems. We independently developed a multifunctional instrument to measure the soil amendment concentration. Clay conductivity measurements were used by adding different concentrations of ADNB within the range of 0 to 50 °C, and the mechanism by which temperature and ADNB affect the conductivity of clay was revealed. In addition, the quantitative relationship between the clay conductivity, ambient temperature and concentration of ADNB was elucidated. According to the growth conditions of melinis minutiflora and pigeon pea under different concentrations of ADNB, the optimal ADNB concentration needed to improve ecological restoration was obtained, which provided a new way to evaluate the effects of the large-scale use of soil modifiers on ecological restoration

    Precise Positioning of BDS, BDS/GPS: Implications for Tsunami Early Warning in South China Sea

    No full text
    Global Positioning System (GPS) has been proved to be a powerful tool for measuring co-seismic ground displacements with an application to seismic source inversion. Whereas most of the tsunamis are triggered by large earthquakes, GPS can contribute to the tsunami early warning system (TEWS) by helping to obtain tsunami source parameters in near real-time. Toward the end of 2012, the second phase of the BeiDou Navigation Satellite System (BDS) constellation was accomplished, and BDS has been providing regional positioning service since then. Numerical results indicate that precision of BDS nowadays is equivalent to that of the GPS. Compared with a single Global Satellite Navigation System (GNSS), combined BDS/GPS real-time processing can improve accuracy and especially reliability of retrieved co-seismic displacements. In the present study, we investigate the potential of BDS to serve for the early warning system of tsunamis in the South China Sea region. To facilitate early warnings of tsunamis and forecasting capabilities in this region, we propose to distribute an array of BDS-stations along the Luzon Island (Philippines). By simulating an earthquake with Mw = 8 at the Manila trench as an example, we demonstrate that such an array will be able to detect earthquake parameters in real time with a high degree of accuracy and, hence, contribute to the fast and reliable tsunami early warning system in this region

    Fc Gamma Receptor IIb Expressed in Hepatocytes Promotes Lipid Accumulation and Gluconeogenesis

    No full text
    Non-alcoholic fatty liver disease (NAFLD) is characterized by ectopic lipid accumulation in the liver, usually combined with hepatic insulin resistance. Fc-gamma receptor-IIb (FcγRIIb) and its ligand are reported to be associated with obesity and type 2 diabetes mellitus (T2DM). As knowledge about FcγRIIb in the literature is mostly generated from studies on skeletal muscle tissue, the expression and function of FcγRIIb in the liver and hepatocytes are largely unknown. In this study, we identified the expression of FcγRIIb in primary cultured mouse hepatocytes: FcγRIIb was upregulated in response to oleic acid (OA) in a dose dependent manner. FcγRIIb knockdown using shRNA suppressed the lipid and triglyceride accumulation, and mRNA expression of ACC1, FASn, CD36, MTTP, and ApoB in OA-treated HepG2 cells. FcγRIIb deficiency mice fed with high fat diet (HFD) had significantly lower liver weight and liver to body weight ratio, as well as less triglyceride accumulation in the livers. In glycometabolism, FcγRIIb hindered insulin-induced phosphorylation of AKT and FOXO1, and in turn upregulated G6Pase and PEPCK mRNA expression, suggesting that FcγRIIb promotes gluconeogenesis by suppressing the AKT/FOXO1/G6Pase/PEPCK pathway in hepatocytes. This study reveals a novel role for FcγRIIb in regulating lipid metabolism and glycometabolism, and provides a new therapeutic target to improve NAFLD
    corecore