12 research outputs found

    Transcription Profiling of a Revealed the Potential Molecular Mechanism of Governor Vessel Electroacupuncture for Spinal Cord Injury in Rats

    Get PDF
    Objective This study aimed to identify differentially expressed genes (DEGs) by transcriptome analysis to elucidate a potential mechanism by which governor vessel electroacupuncture (GV-EA) promotes neuronal survival, axonal regeneration, and functional recovery after complete transection spinal cord injury (SCI). Methods Sham, control, or GV-EA group adult female Sprague Dawley rats underwent a complete transection SCI protocol. SCI area RNA-seq investigated the DEGs of coding and noncoding RNAs 7 days post-SCI. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses were used to classify DEGs functions, to explain a possible molecular mechanism. Immunofluorescence and BBB (Basso, Beattie, and Bresnahan) score were used to verify a GV-EA treatment effect following SCI. Results GV-EA treatment could regulate the expression of 173 mRNA, 260 lncRNA, and 153 circRNA genes among these DEGs resulted by SCI. GO enrichment analysis showed that the DEGs were most enriched in membrane, actin binding, and regulation of Toll-like receptor signaling pathway. KEGG pathway analysis showed enriched pathways (e.g. , Toll-like receptors, MAPK, Hippo signaling). According to the ceRNA network, miR-144-3p played a regulatory role by interacting with lncRNA and circRNA. GV-EA also promoted the injured spinal cord neuron survival, axonal regeneration, and functional improvement of hind limb locomotion. Conclusion Results of our RNA-seq suggest that post-SCI GV-EA may regulate characteristic changes in transcriptome gene expression, potential critical genes, and signaling pathways, providing clear directions for further investigation into the mechanism of GV-EA in subacute SCI treatment. Moreover, we found that GV-EA promotes neuronal survival, nerve fiber extension, and motor function recovery in subacute SCI

    Mesenchymal Stem Cells Combined With Electroacupuncture Treatment Regulate the Subpopulation of Macrophages and Astrocytes to Facilitate Axonal Regeneration in Transected Spinal Cord

    Get PDF
    Objective Herein, we investigated whether mesenchymal stem cells (MSCs) transplantation combined with electroacupuncture (EA) treatment could decrease the proportion of proinflammatory microglia/macrophages and neurotoxic A1 reactive astrocytes and inhibit glial scar formation to enhance axonal regeneration after spinal cord injury (SCI). Methods Adult rats were divided into 5 groups after complete transection of the spinal cord at the T10 level: a control group, a nonacupoint EA (NA-EA) group, an EA group, an MSC group, and an MSCs+EA group. Immunofluorescence labeling, quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blots were performed. Results The results showed that MSCs+EA treatment reduced the proportion of proinflammatory M1 subtype microglia/macrophages, but increased the differentiation of anti-inflammatory M2 phenotype cells, thereby suppressing the mRNA and protein expression of proinflammatory cytokines (tumor necrosis factor-α and IL-1β) and increasing the expression of an anti-inflammatory cytokine (interleukin [IL]-10) on days 7 and 14 after SCI. The changes in expression correlated with the attenuated neurotoxic A1 reactive astrocytes and glial scar, which in turn facilitated the axonal regeneration of the injured spinal cord. In vitro, the proinflammatory cytokines increased the level of proliferation of astrocytes and increased the expression levels of C3, glial fibrillary acidic protein, and chondroitin sulfate proteoglycan. These effects were blocked by administering inhibitors of ErbB1 and signal transducer and activator of transcription 3 (STAT3) (AG1478 and AG490) and IL-10. Conclusion These findings showed that MSCs+EA treatment synergistically regulated the microglia/macrophage subpopulation to reduce inflammation, the formation of neurotoxic A1 astrocytes, and glial scars. This was achieved by downregulating the ErbB1-STAT3 signal pathway, thereby providing a favorable microenvironment conducive to axonal regeneration after SCI

    Autonomous Marine Vehicle Operations

    No full text
    The world has witnessed the rapid development of autonomous marine vehicles,such as surface vehicles and underwater vehicles, which have created fruitful innovative approaches to previously unsolvable problems in marine and ocean engineering [...

    The Immunomodulatory Effects of A2 β-Casein on Immunosuppressed Mice by Regulating Immune Responses and the Gut Microbiota

    No full text
    The aim of this study was to investigate the immunomodulatory effects of A2 β-casein (β-CN) in cyclophosphamide-induced immunosuppressed BALB/c mice. Experiments conducted in vitro revealed that A2 β-CN digestive products have potent immunostimulatory activities. Animal studies demonstrated that A2 β-CN improved the immunological organ index reduction trend caused by cyclophosphamide, reduced the pathological damage to the spleen tissue in immunosuppressed mice, increased the release of IL-17A, IgG, and IgA, and reduced the production of IL-4. By regulating the relative abundance of advantageous bacteria like Oscillospira, Lactobacillus, and Bifidobacteria and harmful bacteria like Coprococcus and Desulfovibrionaceae, A2 β-CN improved gut microbiota disorders in immunosuppressed mice. Moreover, A2 β-CN promoted the production of short-chain fatty acids and increased the diversity of the gut microbiota. Therefore, ingestion of A2 β-CN is beneficial to the host’s immune system and gut health. These findings provide insights for the future application of A2 β-CN-related dairy products

    Numerical modeling and simulation of the electric breakdown of rocks immersed in water using high voltage pulses

    No full text
    Selective breakdown of mineralized particles by using high-voltage pulses (HVP) has been reported, yet its mechanisms are not fully understood, and the HVP setting factors affecting its efficacy in ore pre-concentration for the mining industry are not established. This study investigates the electro-dynamic mechanisms of electric breakdown by using the time-transient dielectric breakdown model and the finite-difference numerical method. Monte-Carlo method with random sampling is applied to calculate breakdown probabilities. The model and the selected parameters have been validated by the published experimental data of the electric breakdown of mineralized synthetic particles. The simulations of pulse rising time from 150\ua0ns to 1\ua0μs showed that the HVP breakdown threshold of rock particles gradually increased as the pulse rising time decreased. This suggests that to minimize the mis-breakdown of barren rocks in the HVP-enabled ore pre-concentration application, it is important to use a generator with a short pulse rising time. Shorter pulses also led to a higher probability of the internal breakdown of the mineralized particles. The simulations indicate that inhomogeneity of conductivity in an ore particle caused the streamers to bend toward the area of inclusion with high conductivity in a host rock matrix, which increased the probabilities of the breakdown of this mineralized particle. This phenomenon was more pronounced as conductivity rose. High-conductivity inclusions can reduce the minimum voltages required for the breakdown of the mineralized particles

    Multifunctional, Robust, and Porous PHBV—GO/MXene Composite Membranes with Good Hydrophilicity, Antibacterial Activity, and Platelet Adsorption Performance

    No full text
    The limitations of hydrophilicity, strength, antibacterial activity adsorption performance of the biobased and biocompatible polymer materials, such as polyhydroxyalkanoates (PHAs), significantly restrict their wider applications especially in medical areas. In this paper, a novel composite membrane with high antibacterial activity and platelet adsorption performance was prepared based on graphene oxide (GO), MXene and 3-hydroxybutyrate-co-hydroxyvalerate (PHBV), which are medium-chain-length-copolymers of PHA. The GO/MXene nanosheets can uniformly inset on the surface of PHBV fibre and give the PHBV—GO/MXene composite membranes superior hydrophilicity due to the presence of hydroxyl groups and terminal oxygen on the surface of nanosheets, which further provides the functional site for the free radical polymerization of ester bonds between GO/MXene and PHBV. As a result, the tensile strength, platelet adsorption, and blood coagulation time of the PHBV—GO/MXene composite membranes were remarkably increased compared with those of the pure PHBV membranes. The antibacterial rate of the PHBV—GO/MXene composite membranes against gram-positive and gram-negative bacteria can reach 97% due to the antibacterial nature of MXene. The improved strength, hydrophilicity, antibacterial activity and platelet adsorption performance suggest that PHBV—GO/MXene composite membranes might be ideal candidates for multifunctional materials for haemostatic applications

    A Research on Delayed Thermal Depolarization, Electric Properties, and Stress in (Bi0.5Na0.5)TiO3-Based Ceramic Composites

    No full text
    Depolarization behavior is one of the main shortcomings of (Bi0.5Na0.5)TiO3-based ceramics. Considering the undesirable efficiency of traditional modification methods, in this paper a series of 0–3 type ceramic composites 0.85(Bi0.5Na0.5)TiO3-0.11(Bi0.5K0.5)TiO3-0.04BaTiO3-x mol% ZnO (BNKT-BT-xZnO)) were synthesized by introducing ZnO nanoparticles. The results of the X-ray diffraction pattern (XRD) and energy dispersive spectroscopy (EDS) demonstrate that the majority of ZnO nanoparticles grow together to form enrichment regions, and the other Zn2+ ions diffuse into the matrix after sintering. With ZnO incorporated, the ferroelectric–ergodic relaxor transition temperature, TF-R, and depolarization temperature, Td, increase to above 120 °C and 110 °C, respectively. The research on temperature-dependent P–E loops verifies an attenuated ergodic degree induced by ZnO incorporation. For this reason, piezoelectric properties can be well-maintained below 110 °C. The electron backscatter diffraction (EBSD) was employed to investigate the stress effect. Orientation maps reveal the random orientation of all grains, excluding the impact of texture on depolarization. The local misorientation image shows that more pronounced strain appears near the boundaries, implying stress is more concentrated there. This phenomenon supports the hypothesis that potential stress suppresses depolarization. These results demonstrate that the depolarization behavior is significantly improved by the introduction of ZnO. The composites BNKT-BT-xZnO are promising candidates of lead-free ceramics for practical application in the future

    Adaptive evolution of the enigmatic Takakia now facing climate change in Tibet.

    No full text
    The most extreme environments are the most vulnerable to transformation under a rapidly changing climate. These ecosystems harbor some of the most specialized species, which will likely suffer the highest extinction rates. We document the steepest temperature increase (2010-2021) on record at altitudes of above 4,000 m, triggering a decline of the relictual and highly adapted moss Takakia lepidozioides. Its de-novo-sequenced genome with 27,467 protein-coding genes includes distinct adaptations to abiotic stresses and comprises the largest number of fast-evolving genes under positive selection. The uplift of the study site in the last 65 million years has resulted in life-threatening UV-B radiation and drastically reduced temperatures, and we detected several of the molecular adaptations of Takakia to these environmental changes. Surprisingly, specific morphological features likely occurred earlier than 165 mya in much warmer environments. Following nearly 400 million years of evolution and resilience, this species is now facing extinction
    corecore