6 research outputs found

    Augmented Lagrange Based on Modified Covariance Matching Criterion Method for DOA Estimation in Compressed Sensing

    Get PDF
    A novel direction of arrival (DOA) estimation method in compressed sensing (CS) is presented, in which DOA estimation is considered as the joint sparse recovery from multiple measurement vectors (MMV). The proposed method is obtained by minimizing the modified-based covariance matching criterion, which is acquired by adding penalties according to the regularization method. This minimization problem is shown to be a semidefinite program (SDP) and transformed into a constrained quadratic programming problem for reducing computational complexity which can be solved by the augmented Lagrange method. The proposed method can significantly improve the performance especially in the scenarios with low signal to noise ratio (SNR), small number of snapshots, and closely spaced correlated sources. In addition, the Cramér-Rao bound (CRB) of the proposed method is developed and the performance guarantee is given according to a version of the restricted isometry property (RIP). The effectiveness and satisfactory performance of the proposed method are illustrated by simulation results

    Multiple Sparse Measurement Gradient Reconstruction Algorithm for DOA Estimation in Compressed Sensing

    Get PDF
    A novel direction of arrival (DOA) estimation method in compressed sensing (CS) is proposed, in which the DOA estimation problem is cast as the joint sparse reconstruction from multiple measurement vectors (MMV). The proposed method is derived through transforming quadratically constrained linear programming (QCLP) into unconstrained convex optimization which overcomes the drawback that l1-norm is nondifferentiable when sparse sources are reconstructed by minimizing l1-norm. The convergence rate and estimation performance of the proposed method can be significantly improved, since the steepest descent step and Barzilai-Borwein step are alternately used as the search step in the unconstrained convex optimization. The proposed method can obtain satisfactory performance especially in these scenarios with low signal to noise ratio (SNR), small number of snapshots, or coherent sources. Simulation results show the superior performance of the proposed method as compared with existing methods

    Off-Grid DOA Estimation Using Alternating Block Coordinate Descent in Compressed Sensing

    No full text
    This paper presents a novel off-grid direction of arrival (DOA) estimation method to achieve the superior performance in compressed sensing (CS), in which DOA estimation problem is cast as a sparse reconstruction. By minimizing the mixed k-l norm, the proposed method can reconstruct the sparse source and estimate grid error caused by mismatch. An iterative process that minimizes the mixed k-l norm alternately over two sparse vectors is employed so that the nonconvex problem is solved by alternating convex optimization. In order to yield the better reconstruction properties, the block sparse source is exploited for off-grid DOA estimation. A block selection criterion is engaged to reduce the computational complexity. In addition, the proposed method is proved to have the global convergence. Simulation results show that the proposed method has the superior performance in comparisons to existing methods

    Two-Dimensional DOA Estimation in Compressed Sensing with Compressive-Reduced Dimension-lp-MUSIC

    Get PDF
    This paper presents a novel two-dimensional (2D) direction of arrival (DOA) estimation method in compressed sensing (CS) to remove the estimation failure problem and achieve superior performance. The proposed method separates the steering vector into two parts to construct two corresponding noise subspaces by introducing electric angles. Then, electric angles are estimated based on the constructed noise subspaces. In order to estimate the azimuth and elevation angles in terms of estimates of electric angles, arc-tangent operations are exploited. The arc-tangent is a one-to-one function and allows the value of the argument to be larger than unity so that the proposed method never fails. The proposed method can avoid pair matching to reduce the computational complexity and extend the number of snapshots to improve performance. Simulation results show that the proposed method can avoid estimation failure occurrence and has superior performance as compared to existing methods

    Direction Finding with Gain/Phase Errors and Mutual Coupling Errors in the Presence of Auxiliary Sensors

    No full text
    Many classical direction of arrival (DOA) estimation algorithms suffer from sensitivity to array errors. A simple but efficient method is presented for direction finding in the presence of gain and phase errors as well as mutual coupling errors. By applying a group of auxiliary sensors, DOAs and gain and phase coefficients can be simultaneously estimated, and mutual coupling coefficients can also be estimated by utilizing a novel decoupling method. The proposed algorithm does not require iterative operation or any calibration sources or spectral peak searching. Simulation results demonstrate the effectiveness of the proposed method

    Direction Finding with Gain/Phase Errors and Mutual Coupling Errors in the Presence of Auxiliary Sensors

    No full text
    Many classical direction of arrival (DOA) estimation algorithms suffer from sensitivity to array errors. A simple but efficient method is presented for direction finding in the presence of gain and phase errors as well as mutual coupling errors. By applying a group of auxiliary sensors, DOAs and gain and phase coefficients can be simultaneously estimated, and mutual coupling coefficients can also be estimated by utilizing a novel decoupling method. The proposed algorithm does not require iterative operation or any calibration sources or spectral peak searching. Simulation results demonstrate the effectiveness of the proposed method
    corecore