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This paper presents a novel two-dimensional (2D) direction of arrival (DOA) estimation method in compressed sensing (CS) to
remove the estimation failure problem and achieve superior performance. The proposed method separates the steering vector into
two parts to construct two corresponding noise subspaces by introducing electric angles. Then, electric angles are estimated based
on the constructed noise subspaces. In order to estimate the azimuth and elevation angles in terms of estimates of electric angles,
arc-tangent operations are exploited. The arc-tangent is a one-to-one function and allows the value of the argument to be larger
than unity so that the proposed method never fails. The proposed method can avoid pair matching to reduce the computational
complexity and extend the number of snapshots to improve performance. Simulation results show that the proposed method can
avoid estimation failure occurrence and has superior performance as compared to existing methods.

1. Introduction

Direction of arrival (DOA) estimation has been a topic
of great interest in many fields such as radar, mobile
communication systems, and medical imaging [1, 2]. Many
conventional DOA estimation methods have been developed
in the last years. Among them, multiple signal classification
(MUSIC) [3] and estimation of signal parameter via rota-
tional invariance technique (ESPRIT) [4] are regarded as the
most popular methods that have high resolution for DOA
estimation. However, the performance of these methods can
severely degrade when signal to noise ratio (SNR) is low,
number of snapshots is small, or sources are coherent.

To overcome the aforesaid drawbacks, DOA estimation
involving compressed sensing (CS) [5, 6] is investigated
due to the development of methods based on CS. The CS-
based estimation methods enforce sparsity on the spatial
spectrumandperform source localization in an overcomplete
dictionary. Malioutov et al. [7] propose the 𝑙1-SVD method
for DOA estimation, which casts DOA estimation problem
as a sparse recovery problem. Stoica et al. [8] present a
sparse iterative covariance-based estimation (SPICE)method
by exploiting the covariance matching criterion. In [9],

an alternative strategy called joint 𝑙0 approximationmethod is
proposed to resolve closed spaced and high coherent sources
even if the number of sources is unknown.

Although one-dimensional (1D) DOA estimation has
attracted tremendous interest, two-dimensional (2D) DOA
estimation is of more practical importance. Since L-shaped
array configuration has higher accuracy than other array
configurations [10] such as the parallel uniform linear array
(ULA) configuration [11], the rectangular array configuration
[12], and the circular array configuration [13], most existing
2D DOA estimation methods are proposed based on the L-
shaped array. Tayem and Kwon [14] propose the propagator
method (PM) with one or two L-shaped array configurations
to remove nonnegligible drawbacks of PM with parallel
shape array configuration, but PM with one L-shaped array
configuration still has estimation failure problem; that is,
estimation method cannot perform estimation correctly in
the entire ranges of the azimuth and elevation angles. Based
on the L-shaped array configuration, Liang and Liu [15]
propose a novel joint azimuth and elevation angles estimation
method, which avoids pair matching. It has been proven that
conventional 2D-MUSIC [16] method can provide a precise
2D estimation, but the requirement of 2D search needs high
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computation complexity. To reduce the computational load,
a sparse L-shaped array configuration [17] is used, where
the azimuth and elevation angles are estimated by the shift-
invariance property of ULA and modified total least squares
(MTLS) techniques, respectively. In [18], Wang et al. propose
2D-𝑙1-SVD and enhanced 2D-𝑙1-SVD methods, which have
several advantages over conventional methods.

In this paper, a novel compressive-reduced dimension-
𝑙𝑝-MUSIC method called CS-RD-𝑙𝑝-MUSIC, which requires
no pair matching, is proposed for 2D DOA estimation
in CS. The key idea of the proposed method is that the
steering vector is separated into two parts to construct two
corresponding noise subspaces by introducing electric angles.
Then, based on the constructed noise subspaces, electric
angles are estimated by the proposed method, where CS-
MUSIC is employed to estimate one electric angle and
RD-𝑙𝑝-MUSIC is adopted for other electric angles. What
is more, CS-MUSIC can improve performance significantly
even if covariance matrix tends to lose rank and RD-𝑙𝑝-
MUSIC can reduce computational complexity by reduced
dimension (RD). Our objective in this paper is to estimate the
azimuth and elevation angles based on estimates of electric
angles by arc-tangent operations. The arc-tangent is a one-
to-one function and allows the value of its argument to be
larger than unity in order that the proposed method never
fails. We show that the proposed method can remove the
estimation failure problem and achieve good performance
due to the application of CS and extension of the number
of snapshots. In addition, the proposed array configuration
can further remove the estimation failure problem without
loss of performance of DOA estimation. Simulation results
illustrate the superior performance of the proposed method
with comparisons to existing methods.

Notations used in this paper are given as follows. Low-
ercase boldface italic letters are served for vectors and
uppercase boldface italic letters are served for matrices. (⋅)∗,
(⋅)

𝑇, and (⋅)𝐻 denote the complex conjugate, transpose, and
conjugate transpose, respectively. (⋅)−1 denotes the inversion
of square matrix or pseudoinversion of nonsquare matrix.
‖ ⋅ ‖2 and ‖ ⋅ ‖𝑝 denote the Euclidean norm for vectors and 𝑙𝑝-
norm formatrices, respectively.A𝑖,A𝑖, and𝐴 𝑖,𝑗 denote the 𝑖th
column, 𝑖th row, and (𝑖, 𝑗)th entry of matrix A, respectively.
diag(A) is a diagonal matrix with the diagonal elements of
matrix A and diag(a) is a diagonal matrix with a being its
diagonal elements. A(𝐾) = [E

(𝐾)

11 ,E
(𝐾)

22 , . . . ,E
(𝐾)

𝐾𝐾
]
𝑇 is a 𝐾2

× 𝐾

matrix, where E(𝐾)

𝑖𝑖
, 𝑖 = 1, 2, . . . , 𝐾, is a 𝐾 × 𝐾 matrix with

one in the (𝑖, 𝑖)th entry and zeros elsewhere. e𝐾(𝑖) is a 𝐾 × 1
vector with one in the 𝑖th element and zeros elsewhere. I𝐾×𝐾

is a 𝐾 × 𝐾 identity matrix. 0𝐾×𝐾 is a 𝐾 × 𝐾 matrix of all
zeros. ⊗ and ⊙ denote the Kronecker product and Hadamard
product, respectively. unvec(⋅) denotes the matrix form of a
vector. Re{⋅} and Im{⋅} denote the real and imaginary parts of
a complex variable, respectively.

The remainder of the paper is organized as follows. In
Section 2, we formulate the 2D DOA estimation problem,
in which the steering vector is separated into two parts.
The proposed method is described in detail in Section 3.
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Figure 1: Proposed array configuration for 2D DOA estimation.

Section 4 shows the performance of the proposed method
and Section 5 concludes the paper.

2. Problem Formulation

The proposed array configuration that consists of three
uniform linear arrays (ULAs) of𝑀 sensors with intersensor
spacing 𝑑 is shown in Figure 1. One ULA lies in the 𝑥-𝑧
plane, another lies in the 𝑦-𝑧 plane, and the last one lies
on the 𝑧-axis. The origin of the array configuration is set
as the referencing sensor. Consider the array configuration
impinged on 𝐾 narrowband far-field sources, 𝑠𝑘(𝑡), 𝑘 =

1, 2, . . . , 𝐾, where the 𝑘th source has the azimuth angle𝛼𝑘 and
elevation angle 𝛽𝑘 shown in Figure 1.

The coordinate of the (𝑖𝑥, 𝑖𝑦, 𝑖𝑧)th sensor is (𝑖𝑥𝑑, 𝑖𝑦𝑑, 𝑖𝑧𝑑)
so that the received source on the (𝑖𝑥, 𝑖𝑦, 𝑖𝑧)th sensor at the 𝑡th
snapshot can be given by

𝑥𝑖
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=
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(1)

where 𝑛𝑖
𝑥
,𝑖
𝑦
,𝑖
𝑧

(𝑡) denotes the noise term, 𝜆 is the wave-
length, 𝑗 = √−1, and three electric angles 𝜃𝑘, 𝜑𝑘,
and 𝜙𝑘 [15], which are the functions of 𝛼𝑘 and 𝛽𝑘,
are, respectively, defined as 𝜃𝑘 = −2𝜋𝑑 cos𝛽𝑘 cos𝛼𝑘/𝜆,
𝜑𝑘 = −2𝜋𝑑 cos𝛽𝑘 sin𝛼𝑘/𝜆, and 𝜙𝑘 = −2𝜋𝑑 sin𝛽𝑘/𝜆.
Since (𝑖𝑥, 𝑖𝑦, 𝑖𝑧) ∈ {(1, 0, 0), (0, 0, 0), (0, 1, 0), . . . , (1, 0,𝑀 −

1), (0, 0,𝑀 − 1), (0, 1,𝑀 − 1)}, the vector form of (1) can be
written as the following form:

x (𝑡) = As (𝑡) +n (𝑡) 𝑡 = 1, 2, . . . , 𝑇, (2)

where x(𝑡) = [𝑥1,0,0(𝑡), 𝑥0,0,0(𝑡), 𝑥0,1,0(𝑡), . . . , 𝑥1,0,𝑀−1(𝑡),
𝑥0,0,𝑀−1(𝑡), 𝑥0,1,𝑀−1(𝑡)]

𝑇 and n(𝑡) = [𝑛1,0,0(𝑡), 𝑛0,0,0(𝑡),
𝑛0,1,0(𝑡), . . . , 𝑛1,0,𝑀−1(𝑡), 𝑛0,0,𝑀−1(𝑡), 𝑛0,1,𝑀−1(𝑡)]

𝑇 are 3𝑀 × 1



International Journal of Antennas and Propagation 3

vectors, s(𝑡) = [𝑠1, 𝑠2, . . . , 𝑠𝐾]
𝑇, A = [a(𝜃1, 𝜑1, 𝜙1), a(𝜃2,

𝜑2, 𝜙2), . . . , a(𝜃𝐾, 𝜑𝐾, 𝜙𝐾)] is a 3𝑀 × 𝐾 manifold matrix,
and a(𝜃𝑘, 𝜑𝑘, 𝜙𝑘) = [𝑒

𝑗𝜃
𝑘 , 1, 𝑒𝑗𝜑𝑘 , 𝑒𝑗𝜃𝑘𝑒𝑗𝜙𝑘 , . . . , 𝑒𝑗𝜃𝑘𝑒𝑗(𝑀−1)𝜙

𝑘 ,

𝑒
𝑗(𝑀−1)𝜙

𝑘 , 𝑒
𝑗𝜑
𝑘𝑒

𝑗(𝑀−1)𝜙
𝑘]

𝑇 is a 3𝑀 × 1 steering vector. By the
properties of ⊗ and ⊙, the steering vector a(𝜃𝑘, 𝜑𝑘, 𝜙𝑘) can be
simplified to

a (𝜃𝑘, 𝜑𝑘, 𝜙𝑘) = ã (𝜙𝑘) ⊗ [ă (𝜃𝑘) ⊙ 󵱰a (𝜑𝑘)]

= ã (𝜙𝑘) ⊗ â (𝜃𝑘, 𝜑𝑘) ,

(3)

where ă(𝜃𝑘) = [𝑒
𝑗𝜃
𝑘 , 1, 1]𝑇, 󵱰a(𝜑𝑘) = [1, 1, 𝑒𝑗𝜑𝑘]𝑇 â(𝜃𝑘, 𝜑𝑘) =

ă(𝜃𝑘) ⊙ 󵱰a(𝜑𝑘) = [𝑒
𝑗𝜃
𝑘 , 1, 𝑒𝑗𝜑𝑘]𝑇, and ã(𝜙𝑘) = [1, 𝑒𝑗𝜙𝑘 , . . . ,

𝑒
𝑗(𝑀−1)𝜙

𝑘]
𝑇. Denote Ã(𝜙) = [ã(𝜙1), ã(𝜙2), . . . , ã(𝜙𝐾)] and

Â(𝜃, 𝜑) = [â(𝜃1, 𝜑1), â(𝜃2, 𝜑2), . . . , â(𝜃𝐾, 𝜑𝐾)] as the manifold
matrices that contain information about 𝜙 and (𝜃, 𝜑), respec-
tively. The purpose of this simplification is to construct two
corresponding noise subspaces to estimate the electric angles.
Then, the matrix form of (2) is given by

X̃ (𝑡) = unvec (x (𝑡)) = Ã (𝜙)G (𝑡) + Ñ (𝑡)

𝑡 = 1, 2, . . . , 𝑇,
(4)

where G(𝑡) = [𝑠1â(𝜃1, 𝜑1), 𝑠2â(𝜃2, 𝜑2), . . . , 𝑠𝐾â(𝜃𝐾, 𝜑𝐾)]
𝑇 is a

𝐾 × 3 source matrix and X̃(𝑡) and Ñ(𝑡) are 𝑀 × 3 matrices
whose elements in the (𝑚, 𝑛)th entry are the (3𝑚 + 𝑛 − 3)th
elements of vectors x(𝑡) and n(𝑡), respectively. It is easy to
see from (4) that 𝜙 and (𝜃, 𝜑) span the column and row
spaces of x̃(𝑡), respectively, and the manifold matrix Ã(𝜙) is
determined by 𝜙 while the sources matrix G(𝑡) is decided
by (𝜃, 𝜑). The electric angles estimation can be performed
by estimating 𝜙 and (𝜃, 𝜑) successively instead of jointly
estimating them. Since 𝜙 is separated from (𝜃, 𝜑), 𝜙 can be
firstly estimated and then (𝜃, 𝜑) can be obtained in terms of
the estimates of 𝜙.

Let {𝜙𝑝}
𝑃
𝜙

𝑝=1 be a sampling grid which covers the entire
spatial domain so that the true electric angles {𝜙𝑘}

𝐾

𝑘=1 are on
the sampling grid set where𝑃𝜙 (𝑃𝜙 ≫ 𝐾) denotes the number
of the sampling grid. This means that if 𝜙𝑝1

, 𝜙𝑝2
, . . . , 𝜙𝑝

𝐾

are one to one corresponding to the true electric angles
𝜙1, 𝜙2, . . . , 𝜙𝐾, we have

𝑔𝑝 =
{

{

{

𝑠𝑘 𝑝 = 𝑝𝑘 (𝑘 = 1, 2, . . . , 𝐾)

0 elsewhere.
(5)

By denoting X ≜ [X̃(1), X̃(2), . . . , X̃(𝑇)] as𝑀 × 3𝑇 data
matrix, (4) can be rewritten as the following sparse form:

X = A (𝜙)G+ [Ñ (1) , Ñ (2) , . . . , Ñ (𝑇)]

= A (𝜙)G+N,
(6)

where A(𝜙) = [ã(𝜙1), ã(𝜙2), . . . , ã(𝜙𝑃
𝜙

)] is the 𝑀 × 𝑃𝜙

manifoldmatrix corresponding to all potential electric angles
which is also defined as an overcomplete dictionary in CS.
Since {G𝑡}

3𝑇
𝑡=1 share the same support based on joint sparsity,

G = [G1,G2, . . . ,G𝑃
𝜙

]
𝑇 has 𝐾 nonzero rows, that is, the row

𝐾-sparse, where G𝑝
𝜙

= [𝑔𝑝
𝜙

(1)Â𝑇

𝑘
(𝜃, 𝜑), 𝑔𝑝

𝜙

(2)Â𝑇

𝑘
(𝜃, 𝜑), . . . ,

𝑔𝑝
𝜙

(𝑇)Â𝑇

𝑘
(𝜃, 𝜑)]

𝑇 is a 3𝑇 × 1 vector. To estimate the electric
angle, the support needs be determined by the matrix X
which is given by

X = ΦA (𝜙)G+ΦN = 󵱰A (𝜙)G+N, (7)

where Φ is the 𝑁 × 𝑀 measurement matrix and 𝑁 is the
number of nonadaptive linear projection measurements.

3. DOA Estimation

In this section, a 2D DOA estimation problem is solved by
two steps in the CS scenario. Based on the above source
model, a 1D DOA estimation is firstly performed to estimate
𝜙 and get the information about (𝜃, 𝜑) which is contained in
the source matrix of (7). Secondly, based on the estimates of
𝜙, two electric angles 𝜃 and 𝜑 can be estimated byminimizing
the relaxation of the residual fitting error [19]

𝐽
(𝑝,𝑞)

(Y) = min
𝑃

∑

𝑖=1
(

𝑄

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

)

𝑝/𝑞

, (8)

where Y ∈ C𝑃×𝑄 is assumed to be the residual fitting error
matrix. For simplicity, the case 𝑞 = 2 is considered in the rest
of this paper; that is,

𝐽
(𝑝,2)

(Y) = min
𝑃

∑

𝑖=1
(

𝑄

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

2
)

𝑝/2

. (9)

Themotivation to choose 𝑞 = 2 is the following twomain
reasons. As can be seen, the first reason is that the number
of nonzero rows can be provided as 𝑝 approaches zero. A
nonzero row can serve as a penalty factor with the reduction
of𝑝which promotes a sparse frame among all rows. Secondly,
practical issues such as computational complexity are also in
favor of this choice. In the case 𝑞 = 2, a low computational
complexity is obtained by minimizing (9) instead of (8) [20].
Then, for notational convenience, we denote 𝐽(𝑝,2)

(Y) by
𝐽
(𝑝)
(Y) which is called 𝑙𝑝-norm.

3.1. CS-RD-𝑙𝑝-MUSIC

Step 1 (estimate 𝜙 by CS-MUSIC). CS-MUSIC, which is an
extension of MUSIC, can identify the parts of support using
CS-based methods, after which the remaining supports are
estimated by the generalized MUSIC criterion. The main
contribution of CS-MUSIC is to overcome the error caused
by losing rank which may cause disastrous consequences in
conventional MUSIC.

Let suppG = {1 ≤ 𝑔 ≤ 𝑃𝜙 : G𝑔
̸= 0} and

𝑅(󵱰A(𝜙)) denote the support ofG and the range space of 󵱰A(𝜙),
respectively. Due to (4), the number of snapshots is extended
to 3𝑇which is one of the advantages of the proposedmethod.
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It is obvious that CS-MUSIC can be simplified as MUSIC
for 𝐾 ≤ 3𝑇. However, CS-MUSIC can estimate DOA with
success but MUSIC fails in the𝐾 > 3𝑇 case. In CS-MUSIC, if
𝐾 > 3𝑇, 𝐾 − 3𝑇 indices of suppG are determined by CS-
based methods such as simultaneous orthogonal matching
pursuit (SOPM) [21] so that columnvector space𝑅(󵱰A𝜂

𝐾−3𝑇

(𝜙))

is decided, where 𝜂𝐾−3𝑇 is the set of indices and 󵱰A𝜂
𝐾−3𝑇

(𝜙)

is the submatrix of 󵱰A(𝜙) with columns indexed by 𝜂𝐾−3𝑇.
The remaining 3𝑇 indices of suppG are obtained by the
generalizedMUSIC criterion. TomakeCS-MUSIC applicable
for all range of the snapshot, two new orthogonal spaces
𝑅(󵱰AG) and 𝑅(𝑃𝑅(Q) − 𝑃𝑅(QQ𝐻󵱰A

𝜂
𝐾−3𝑇

(𝜙))) are constructed where
𝑃𝑅(Q) is the orthogonal projection onto the noise subspace
𝑅(Q). Then, the electric angle 𝜙 can be estimated by the
spectrum search. Now, the major steps of CS-MUSIC are
summarized as follows.

(1) Find𝐾−3𝑇 indices of suppG by SOMP and let 𝜂𝐾−3𝑇

be the set of indices.
(2) Determine 󵱰A𝜂

𝐾−3𝑇

(𝜙) in terms of 𝜂𝐾−3𝑇 and con-
struct the noise subspace of CS-MUSIC 𝑅(𝑃𝑅(Q) −

𝑃𝑅(QQ𝐻󵱰A
𝜂
𝐾−3𝑇

(𝜙))).

(3) For 𝑖 ∈ {1, 2, . . . , 𝑃𝜙}, calculate the spatial spectrum,
𝑃spectral = 1/󵱰A𝐻

𝑖
(𝜙)[𝑃𝑅(Q)−𝑃𝑅(QQ𝐻󵱰A

𝜂
𝐾−3𝑇

(𝜙))]
󵱰A𝑖(𝜙), and

then estimate 𝜙 by the locations of𝐾 highest peaks of
the spatial spectrum.

Step 2 (estimate 𝜃 and 𝜑 by RD-𝑙𝑝-MUSIC). In this step, RD-
𝑙𝑝-MUSIC is exploited to estimate electric angles 𝜃 and 𝜑
in terms of the estimates of 𝜙. Let {𝜙1, 𝜙2, . . . , 𝜙𝐾

} denote
the locations of 𝐾 highest peaks. Then, the row number
corresponding to locations of 𝐾 highest peaks is denoted
as {𝑖1, 𝑖2, . . . , 𝑖𝐾} and these rows contain information about
(𝜃, 𝜑). It is clear that the 𝑖th row vector of source matrix
[ 󵱰𝑔1,1(𝑖), 󵱰𝑔2,1(𝑖), . . . , 󵱰𝑔𝑇,1(𝑖), . . . , 󵱰𝑔1,3(𝑖), 󵱰𝑔2,3(𝑖), . . . , 󵱰𝑔𝑇,3(𝑖)], 𝑖 =

𝑖1, 𝑖2, . . . , 𝑖𝐾, is a 1×3𝑇 vector and thus thematrix form 󵱰G(𝑖) is
a 𝑇 × 3 matrix whose element in the (𝑚, 𝑛)th entry is 󵱰𝑔𝑚,𝑛(𝑖).
Denote A

̃
(𝜃, 𝜑) = Â𝑇

(𝜃, 𝜑) and 󵱰S = [s(1), s(2), . . . , s(𝑇)]𝑇 so
that the 𝑙𝑝-norm minimization problem can be expressed as

𝐽
(𝑝)
(𝜃, 𝜑) = min

𝜃,𝜑
𝐽
(𝑝)
(󵱰G (𝑖) − 󵱰SA

̃
(𝜃, 𝜑))

= min
𝜃,𝜑

𝑇

∑

𝑡=1
(
󵄩󵄩󵄩󵄩󵄩
󵱰G𝑡
(𝑖) − 󵱰S𝑡A

̃
(𝜃, 𝜑)

󵄩󵄩󵄩󵄩󵄩2)
𝑝

𝑖 = 𝑖1, 𝑖2, . . . , 𝑖𝐾.

(10)

Note that 𝐾 𝑙𝑝-norm minimization problems have the
same structure and can be solved in a similar manner. Hence,
we only need to find the optimal solution of oneminimization
problem.The remaining𝐾−1minimization problems can be
handled in the same way.

Since the objective function (10) requires an exhaustive
2D search, high computational cost is needed for precise
estimation which can result in the reduction of algorithmic
efficiency. To avoid heavy computational load, RD-𝑙𝑝-MUSIC

is proposed for 2D estimation just through 1D search. A
detailed derivation process of exploiting RD-𝑙𝑝-MUSIC for
estimating 𝜃 and 𝜑 is given as follows.

Denote 𝐹(𝜃, 𝜑) = ‖󵱰G𝑡
(𝑖) − 󵱰S𝑡A

̃
(𝜃, 𝜑)‖

2
2 so that RD can be

realized by minimizing 𝐹(𝜃, 𝜑). By the property of ‖ ⋅ ‖2, we
have

𝐹 (𝜃, 𝜑)

= [󵱰G𝑡
(𝑖) − 󵱰S𝑡A

̃
(𝜃, 𝜑)] [󵱰G𝑡

(𝑖) − 󵱰S𝑡A
̃
(𝜃, 𝜑)]

𝐻

= const

+ 󵱰S𝑡
[AS (𝜃) ⊙A_ (𝜑)] [AS (𝜃) ⊙A_ (𝜑)]

𝐻

(󵱰S𝑡
)
𝐻

− 2Re {󵱰S𝑡
[AS (𝜃) ⊙A_ (𝜑)] (󵱰G

𝑡
(𝑖))

𝐻

} ,

(11)

where AS(𝜃) = [ă(𝜃1), ă(𝜃2), . . . , ă(𝜃𝐾)]
𝑇 and A_(𝜑) = [󵱰a(𝜑1),

󵱰a(𝜑2), . . . , 󵱰a(𝜑𝐾)]
𝑇. Denote that P(𝐾) = [E

(𝐾)

11 ,E
(𝐾)

22 , . . . ,E
(𝐾)

𝐾𝐾
]
𝑇

and P(3) = [E(3)
11 ,E

(3)
22 ,E

(3)
33 ]

𝑇 are 𝐾2
× 𝐾 and 9 × 3 selection

matrices, respectively, so that the following equation holds
based on selection matrices [22]:

AS (𝜃) ⊙A_ (𝜑)

= P𝑇

(𝐾)
[AS (𝜃) ⊗A_ (𝜑)]P(3)

= P𝑇

(𝐾)
[AS (𝜃) ⊗ I𝐾×𝐾] [I3×3 ⊗A_ (𝜑)]P(3).

(12)

During the aforesaid process, selection matrices are of
the greatest importance. The purpose of utilizing selection
matrices is to separate 𝜃 from 𝜑 and reduce dimension.
Moreover, based on the following equation,

Q1 [I3×3 ⊗A_ (𝜑)]Q2 = A_ (𝜑) , (13)

where Q1 = [I𝐾×𝐾 0𝐾×2𝐾] and Q2 = [I3×3 03×6]
𝑇, (12) can

be further rewritten as

AS (𝜃) ⊙A_ (𝜑)

= P𝑇

(𝐾)
[AS (𝜃) ⊗ I𝐾×𝐾]Q

−1
1 A_ (𝜑)Q

−1
2 P(3).

(14)

Subsequently, by substituting (14) into (11), we have

𝐹 (𝜃, 𝜑) = const− 2Re {󵱰S𝑡P𝑇

(𝐾)
[AS (𝜃) ⊗ I𝐾×𝐾]

⋅Q−1
1 A_ (𝜑)Q

−1
2 P(3) (󵱰G

𝑡
(𝑖))

𝐻

} + 󵱰S𝑡P𝑇

(𝐾)
[AS (𝜃)

⊗ I𝐾×𝐾]Q
−1
1 A_ (𝜑)Q

−1
2 P(3)P

𝐻

(3) (Q
−1
2 )

𝐻

A_
𝐻
(𝜑)

⋅ (Q−1
1 )

𝐻

[AS
𝐻
(𝜃) ⊗ I𝐾×𝐾] (P

𝑇

(𝐾)
)
𝐻

(󵱰S𝑡
)
𝐻

.

(15)

To eliminate trivial solutions AS(𝜃) = 0𝐾×3 and A_(𝜑) =
0𝐾×3, a constraint condition e𝐻

𝐾
(1)[AS(𝜃) ⊙A_(𝜑)]e3(2) − 1 = 0
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is considered. Hence, the cost function 𝐿(𝜃, 𝜑) is given as the
following form:

𝐿 (𝜃, 𝜑) = 󵱰S𝑡P𝑇

(𝐾)
[AS (𝜃) ⊗ I𝐾×𝐾]Q

−1
1 A_ (𝜑)

⋅Q−1
2 P(3)P

𝐻

(3) (Q
−1
2 )

𝐻

A_
𝐻
(𝜑) (Q−1

1 )
𝐻

[AS
𝐻
(𝜃)

⊗ I𝐾×𝐾] (P
𝑇

(𝐾)
)
𝐻

(󵱰S𝑡
)
𝐻

− 2Re {󵱰S𝑡P𝑇

(𝐾)
[AS (𝜃) ⊗ I𝐾×𝐾]Q

−1
1 A_ (𝜑)

⋅Q−1
2 P(3) (

󵱰G𝑡
(𝑖))

𝐻

} − 𝜇 [e𝐻
𝐾
(1)

⋅P𝑇

(𝐾)
[AS (𝜃) ⊗ I𝐾×𝐾]Q

−1
1 A_ (𝜑)Q

−1
2 P(3)e3 (2) − 1] ,

(16)

where 𝜇 is a constant. By setting the partial derivation of (16)
with respect to A_(𝜑) to zero, we have

𝜕𝐿 (𝜃, 𝜑)

𝜕A_ (𝜑)
= 2W (󵱰S𝑡

)
𝐻
󵱰S𝑡WA_ (𝜑)VV

𝐻

− 2Re {W𝐻
(󵱰S𝑡
)
𝐻

(󵱰G𝑡
(𝑖))

𝐻

V𝐻
}

− 𝜇 [W𝐻e𝐾 (1) e
𝐻

3 (2)V
𝐻
] = 0,

(17)

where W = P𝑇

(𝐾)
[AS(𝜃) ⊗ I𝐾×𝐾]Q−1

1 and V = Q−1
2 P(3). By (17)

and the constraint condition e𝐻
𝐾
(1)[AS(𝜃) ⊙ A_(𝜑)]e3(2) = 1, 𝜇

can be expressed as

𝜇 =
2 − 2e𝐻

𝐾
(1) (󵱰S𝑡

)
−1 Re {󵱰G𝑡

(𝑖)} e3 (2)

e𝐻
𝐾
(1) (󵱰S𝑡)

−1
[(󵱰S𝑡)

−1
]
𝐻

e𝐾 (1)
. (18)

Therefore, it can be deduced from (17) and (18) that

A_ (𝜑) =W−1
(󵱰S𝑡
)
−1 [
[

[

Re {󵱰G𝑡
(𝑖)}

+

[1 − e𝐻
𝐾
(1) (󵱰G𝑡

(𝑖))
−1 Re {󵱰G𝑡

(𝑖)} e3 (2)] e𝐾 (1) e𝐻3 (2)

e𝐻
𝐾
(1) (󵱰S𝑡)

−1
[(󵱰S𝑡)

−1
]
𝐻

e𝐾 (1)

]
]

]

⋅V−1
.

(19)

As one may note, A
̃
(𝜃, 𝜑) is transformed into 󵱰U(𝜃) by

inserting A_(𝜑) into A
̃
(𝜃, 𝜑) and thus RD is realized so that

2D DOA estimation just requires 1D search. Furthermore,
RD can avoid the failure occurrence in separating 𝜃 from 𝜑.
As a matter of fact, RD also provides an important clue for
expounding the relationship between 𝜃 and 𝜑. Therefore, RD
is the foundation of estimating electric angles 𝜃 and 𝜑 by RD-
𝑙𝑝-MUSIC.Then, we focus on the solver for the last remaining
problem to estimate 𝜃; that is,

𝐽
(𝑝)
(𝜃) = min

𝜃

𝑇

∑

𝑡=1
(
󵄩󵄩󵄩󵄩󵄩
󵱰G𝑡
(𝑖) − 󵱰S𝑡󵱰U (𝜃)󵄩󵄩󵄩󵄩󵄩2)

𝑝

. (20)

By denoting r𝑡 = 󵱰G𝑡
(𝑖) − 󵱰S𝑡󵱰U(𝜃) as the residual vector, the

objective function 𝑓(𝑟𝑡
𝑖
) can be expressed as

𝑓 (𝑟
𝑡

𝑖
) =

𝑇

∑

𝑡=1
(

3
∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑟
𝑡

𝑖

󵄨󵄨󵄨󵄨󵄨

2
)

𝑝/2

. (21)

Based on the following equation,

𝜕𝑓

𝜕 (𝑟𝑡
𝑖
)
∗ =

1
2
(

𝜕𝑓

𝜕Re {𝑟𝑡
𝑖
}
+ 𝑗

𝜕𝑓

𝜕Im {𝑟𝑡
𝑖
}
) , (22)

the partial derivative with respect to (𝑟𝑡
𝑖
)
∗ can be given by

𝜕𝑓

𝜕 (𝑟𝑡
𝑖
)
∗ =

𝑝

2
(

𝑇

∑

𝑡=1

󵄨󵄨󵄨󵄨󵄨
𝑟
𝑡

𝑖

󵄨󵄨󵄨󵄨󵄨

2
)

𝑝/2−1

𝑟
𝑡

𝑖
. (23)

Due to (23), the gradient of 𝑓 with respect to r𝑡 is given
by

𝜕𝑓

𝜕r𝑡
= [

𝜕𝑓

𝜕 (𝑟𝑡1)
∗

𝜕𝑓

𝜕 (𝑟𝑡2)
∗

𝜕𝑓

𝜕 (𝑟𝑡3)
∗ ] =

𝑝

2
r𝑡 ⊙Λ, (24)

where

Λ

= [(

𝑇

∑

𝑡=1

󵄨󵄨󵄨󵄨𝑟
𝑡

1
󵄨󵄨󵄨󵄨
2
)

𝑝/2−1

(

𝑇

∑

𝑡=1

󵄨󵄨󵄨󵄨𝑟
𝑡

2
󵄨󵄨󵄨󵄨
2
)

𝑝/2−1

(

𝑇

∑

𝑡=1

󵄨󵄨󵄨󵄨𝑟
𝑡

3
󵄨󵄨󵄨󵄨
2
)

𝑝/2−1

] .

(25)

Denote F = diag(Λ) so that (24) can be rewritten as

𝜕𝑓

𝜕r𝑡
=
𝑝

2
r𝑡F. (26)

Note thatF is a positive definitematrix clearly.Then, since
the second-order partial derivative of 𝑓 with respect to 𝑟𝑡

𝑖
is

given as the following form,

𝜕
2
𝑓

𝜕 (𝑟𝑡
𝑖
)
𝑇
𝜕 (𝑟𝑡

𝑗
)
∗

=

{{{

{{{

{

𝑝

2
(

𝑇

∑

𝑡=1

󵄨󵄨󵄨󵄨𝑟
𝑡

𝑖

󵄨󵄨󵄨󵄨
2
)

𝑝/2−1

[

[

(
𝑝

2
− 1)(

3
∑

𝑖=1

󵄨󵄨󵄨󵄨𝑟
𝑡

𝑖

󵄨󵄨󵄨󵄨
2
)

−1
󵄨󵄨󵄨󵄨𝑟

𝑡

𝑖

󵄨󵄨󵄨󵄨
2
+ 1]

]

𝑖 = 𝑗

0 𝑖 ̸= 𝑗,

(27)

the 3 × 3 Hessian matrix of 𝑓 with respect to r𝑡 is given by

Hr𝑡(r𝑡)∗ =
𝜕
2
𝑓

𝜕 (r𝑡)𝑇 𝜕 (r𝑡)∗
=
𝑝

2

⋅ F[
[

(
𝑝

2
− 1)(

3
∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑟
𝑡

𝑖

󵄨󵄨󵄨󵄨󵄨

2
)

−1

diag ((r𝑡)
𝑇

r𝑡)

+ I3×3]
]

.

(28)



6 International Journal of Antennas and Propagation

Denote the gradient of 𝑓 with respect to 󵱰U(𝜃) as Γ =
[Γ1, Γ2, Γ3] so that Γ𝑖 is computed as

Γ𝑖 =
𝜕𝑓

𝜕󵱰U∗
𝑖

= − [(󵱰S𝑡
)
𝑇

⊗ e𝑇3 (𝑖)]
𝑝

2
(r𝑡F)

𝑇

. (29)

Then, the Hessian matrix of 𝑓 with respect to 󵱰U(𝜃) is

H󵱰U∗󵱰U =
𝜕
2
𝑓

𝜕󵱰U∗𝜕󵱰U𝑇

= [(󵱰S𝑡
)
𝑇

⊗Σ]P(3)Hr𝑡(r𝑡)∗P
𝑇

(3) [(
󵱰S𝑡
)
∗

⊗Σ
𝑇
] ,

(30)

where Σ = [e3(1) e3(2) e3(3)]. By applying the Newton
method, the following sequence {󵱰U(𝑧)

(𝜃)}, 𝑧 = 0, 1, 2, . . ., is
obtained to find the minimization of 𝑓:

󵱰U(𝑧+1)
(𝜃) = 󵱰U(𝑧)

(𝜃) + 𝜎𝑧Δ
(𝑧)
(󵱰U(𝑧)

(𝜃)) , (31)

where 𝜎𝑧 is a positive step and Δ
(𝑧)
(󵱰U(𝑧)

(𝜃)) =

−H󵱰U∗󵱰UΓ(󵱰U(𝑧)
(𝜃)). The initial value of 󵱰U(𝑧)

(𝜃) is defined
as 󵱰U(0)

(𝜃) = [(󵱰S𝑡
)
𝐻󵱰S𝑡

]
−1
(󵱰S𝑡
)
𝐻󵱰G𝑡

(𝑖). Specifically, the iteration
is terminated if the following stopping criterion is satisfied:

𝐽
(𝑝)
(𝜃

(𝑧)
) − 𝐽

(𝑝)
(𝜃

(𝑧+1)
)

𝐽(𝑝) (𝜃(𝑧))
< 𝜀 (32)

for some small 𝜀. In the simulations, 𝜀 is set to 10−7. After
determining 󵱰U(𝜃), the projection matrix onto the noise
subspace is given by

󵱰P = I3×3 −U (𝜃) [U
𝐻
(𝜃)U (𝜃)]

−1
U𝐻

(𝜃) , (33)

where U(𝜃) = 󵱰U𝐻
(𝜃). Then, by computing the spatial

spectrum,𝑃spetral(𝜃) = 1/ă𝐻
(𝜃)󵱰Pă(𝜃), and searching its peaks,

we can provide an accurate estimation for 𝜃. Once 𝜃 is
obtained from the spatial spectrum, 𝜑 is easily estimated in
terms of (19).Therefore, RD-𝑙𝑝-MUSIC avoids pairmatching.

After electric angles are estimated, the azimuth angle 𝛼𝑘

and elevation angle 𝛽𝑘 of the 𝑘th source can be given by 𝛼𝑘 =

arctan(𝜑𝑘/𝜃𝑘) and 𝛽𝑘 = arctan(𝜙𝑘 sin𝛼𝑘/𝜑𝑘), respectively.
The major steps of RD-𝑙𝑝-MUSIC for estimating 𝜃 and 𝜑 are
given as follows.

(1) The 𝑙𝑝-norm minimization problem (10) is given in
terms of the estimates of 𝜙.

(2) Due to (18) and (19), calculate 𝜇 and A_(𝜑) so that RD
is realized.

(3) Calculate the gradient Γ and Hessian matrixH󵱰U∗󵱰U in
terms of (29) and (30). Then, update 󵱰U(𝜃) in terms of
(31).

(4) If the stopping criterion (32) is satisfied, stop the
update and go to the next step. Otherwise, return to
step (3).

(5) Estimate 𝜃 by searching the spatial spectrum and then
𝜑 is estimated in terms of (19).

(6) Estimate the azimuth and elevation angles according
to the estimates of electric angles.

3.2. Discussion. Note that electric angle 𝜙 is estimated based
on 𝑅(𝑃𝑅(Q) −𝑃𝑅(QQ𝐻󵱰A

𝜂
𝐾−3𝑇

(𝜙))) (noise subspace corresponding
to 𝜙) and the estimates of electric angles 𝜃 and 𝜑 obtained
by 𝑅(󵱰P) (noise subspace corresponding to 𝜃 and 𝜑) rely on
the estimate quality of 𝜙. Moreover, the elevation angle is
estimated based on the estimate of the azimuth angle and
both of themuse the arc-tangent operator. It is worth pointing
out that since the arc-tangent is a one-to-one function and
its argument is allowed to be larger than unity, the proposed
method never fails. This is the major reason why the azimuth
and elevation angles are estimated using three electric angles
instead of two electric angles.

Regarding the proposed array configuration, wemake full
use of structural feature for 2DDOAestimation, which shows
no failure in the entire ranges of 𝛼 and 𝛽. Furthermore, when
seen from above, the proposed array configuration seems to
be an L-array configuration. Referring to [10], the Cramer-
Rao bound (CRB) based on the L-shaped array configuration
is lower than those of other array configurations. Therefore,
the proposed array configuration not only guarantees that the
failure probability tends to zero, but it can also have high
precision.

4. Simulation Results

In this section, several simulation results are presented to
validate the superior performance of the proposed method
as compared to PM of one L-shaped array configuration
and 2D-MUSIC. The proposed method and 2D-MUSIC are
performed in the proposed array configuration and PM is
performed in the L-shaped array configuration of the 𝑥-
𝑦 plane. The total numbers of elements for array configu-
rations and the spacing between the adjacent elements are
set to 9 and 𝑑 = 𝜆/2, respectively. Although the array
configurations for three methods are different, the degrees
of array configurations are the same and the projections
of the array configurations on the 𝑥-𝑦 plane are L-shaped
array configurations. In the typical DOA estimation, since the
sources always come from above the sensor, that is, above the
𝑥-𝑦 plane, the azimuth angle is in the range of 0∘ and 360∘

and the elevation angle is in the range of 0∘ and 90∘. Hence,
electric angles 𝜃 and 𝜑 belong to [−180∘

, 180∘
] and 𝜙 belongs

to [−180∘
, 0∘
]. All simulation results are obtained from 100

Monte Carlo runs. In the simulations, the root mean squared
error (RMSE) of 2D DOA estimation is defined as

RMSE = 1
𝐾

𝐾

∑

𝑘=1
(RMSE (𝛼𝑘) +RMSE (𝛽𝑘)) , (34)

where RMSE(𝛼𝑘) = [∑
100
𝑙=1 ((𝛼̃𝑘,𝑙 − 𝛼𝑘)

2
/100)]1/2, RMSE(𝛽𝑘) =

[∑
100
𝑙=1 ((𝛽𝑘,𝑙 − 𝛽𝑘)

2
/100)]1/2, and 𝛼̃𝑘,𝑙 and 𝛽𝑘,𝑙 are the estimates

of 𝛼𝑘 and 𝛽𝑘 in the 𝑙th run, respectively. It is well known
that the grid interval serves as a tradeoff between precision
and computational complexity. For all simulations, we make
the coarse grid interval with 1∘ and perform a local fine grid
interval in the locations obtained by utilizing the coarse grid
interval.
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Figure 2: Angle estimation results of three methods for three
sources.

In the first simulation, we show angle estimation results
of three methods in the azimuth-elevation plane. Consider
three independent sources with DOAs of (𝛼1 = 3∘

, 𝛽1 = 2∘
),

(𝛼2 = 45∘
, 𝛽2 = 40∘

), and (𝛼3 = 80∘
, 𝛽3 = 85∘

) impinging
on the proposed array configuration. Figure 2 presents angle
estimation results of three methods for all three sources with
the fixed SNR 5 dB and number of snapshots being 100. It is
indicated in Figure 2 that CS-RD-𝑙𝑝-MUSIC and 2D-MUSIC
can provide correct estimates for the azimuth and elevation
angles of three sources but PM fails. Moreover, although CS-
RD-𝑙𝑝-MUSIC slightly outperforms 2D-MUSIC in terms of
angle estimation results, it avoids an exhaustive 2D search
which is needed in 2D-MUSIC.

The RMSE of three methods versus SNR and the number
of snapshots is investigated in the second simulation.We keep
the same source model as in the first simulation. Figure 3
depicts RMSE as a function of SNRof threemethods andCRB
[23] with the fixed number of snapshots being 100, whereas
RMSE versus the number of snapshots with the fixed SNR
5 dB is shown in Figure 4. It can be concluded from Figures
3 and 4 that CS-RD-𝑙𝑝-MUSIC has more precise estimation
than 2D-MUSIC and PM with no estimation failure. It is
clearly seen that the performance of CS-RD-𝑙𝑝-MUSIC is
gradually improving and is close to the CRBwith the increase
of SNR and the number of snapshots.

Figure 5 illustrates the relation between the bias of DOA
estimation and the angle separation of two independent
sources. The bias is defined as the difference between the
estimated angle and the real angle, which can indicate the
degree of deviation from the true angle. The smaller the bias
is, the better performance themethod has.Therefore, the bias
is the significant performance index. Consider two sources
impinging from DOAs of (𝛼1 = 25∘

, 𝛽1 = 20∘
) and (𝛼2 =

𝛼1 + 𝛿, 𝛽2 = 𝛽1 + 𝛿), where the step of the angle separation
𝛿 is 1∘. The SNR is 3 dB and the number of snapshots is 50.
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Figure 3: RMSE versus SNR with the fixed number of snapshots
being 100.
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Figure 4: RMSE versus number of snapshots with the fixed SNR
5 dB.

As can be seen from Figure 5, there is the bias for small angle
separation using threemethods and the bias of threemethods
disappears as long as the angle separation is no less than 17∘.

In the fourth simulation, we compare the performance of
three methods for coherent sources by showing the RMSE
versus SNR and the number of snapshots. Consider two
coherent sources impinging from DOAs of (𝛼1 = 30∘

, 𝛽1 =
45∘

) and (𝛼2 = 70∘
, 𝛽2 = 75∘

). Since the conventional 2D-
MUSICmethod is incapable of handing the coherent sources,
the forward spatial smoothing method is exploited in the
2D-MUSIC called 2D-FSS-MUSIC to estimate the coherent
sources. Figures 6 and 7 plot the RMSE versus SNR and the
number of snapshots for coherent sources, respectively. It can
be seen from Figures 6 and 7 that the proposed method has
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Figure 5: Bias versus angle separation with the fixed SNR 3 dB and
number of snapshots being 50.
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Figure 6: RMSE versus SNR with the fixed number of snapshots
being 100 for coherent sources.

the best estimation accuracy among all three methods for
coherent sources. Moreover, this performance advantage is
gradually improving with SNR or the number of snapshots
increasing.

Finally, Figure 8 presents the RMSE of the proposed
method for all possible azimuth and elevation angles with
the fixed SNR 3 dB and number of snapshots being 50. One
single source is considered in this simulation.The steps of the
azimuth and elevation angles are both fixed at 5∘. We observe
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Figure 7: RMSE versus number of snapshots with the fixed SNR
5 dB for coherent sources.
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Figure 8: RMSE of the proposed method at different DOAs with
the fixed SNR 3 dB and number of snapshots being 50 for one single
source.

from Figure 8 that no estimation failure occurs for all pair
angles with the proposed method.

5. Conclusion

In this paper, a novel CS-RD-𝑙𝑝-MUSIC is proposed for 2D
DOA estimation in CS. The proposed method introduces
electric angles and then separates the steering vector into two
parts for constructing two corresponding noise subspaces.
The electric angles are estimated by CS-MUSIC and RD-𝑙𝑝-
MUSIC based on the constructed noise subspaces, so that
the azimuth and elevation angles are obtained by arc-tangent
operations in terms of estimates of electric angles. Since the
arc-tangent is a one-to-one function and allows the value of
its argument to be larger than unity, the proposed method
never fails. The proposed method, which requires no pair
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matching, can reduce computational complexity and extend
the number of snapshots to improve performance. Simulation
results show that the proposed method never fails for all pair
angles and has better estimation performance than PM and
2D-MUSIC in terms of RMSE and bias of DOA estimation.
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