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A novel direction of arrival (DOA) estimation method in compressed sensing (CS) is presented, in which DOA estimation is
considered as the joint sparse recovery from multiple measurement vectors (MMV). The proposed method is obtained by mini-
mizing the modified-based covariance matching criterion, which is acquired by adding penalties according to the regularization
method. This minimization problem is shown to be a semidefinite program (SDP) and transformed into a constrained quadratic
programming problem for reducing computational complexity which can be solved by the augmented Lagrange method. The
proposed method can significantly improve the performance especially in the scenarios with low signal to noise ratio (SNR), small
number of snapshots, and closely spaced correlated sources. In addition, the Cramér-Rao bound (CRB) of the proposed method is
developed and the performance guarantee is given according to a version of the restricted isometry property (RIP).The effectiveness
and satisfactory performance of the proposed method are illustrated by simulation results.

1. Introduction

Direction of arrival (DOA) estimation of multiple narrow-
band sources has been an interesting research topic in array
signal processing. Its applications span many fields including
radar, communication systems, and medical imaging [1, 2].
Many effective algorithms are proposed for DOA estimation,
which are mainly classified into three categories. The beam-
forming algorithms such as MVDR [3] and MEM [4] obtain
a nonparametric spatial spectrum by optimizing the filter
weights. The subspace algorithms such as MUSIC [5] and
ESPRIT [6] and their derivatives [7, 8] exploit the orthogonal-
ity of signal subspace andnoise subspace forDOAestimation.
The subspace fitting algorithms including Maximum Likeli-
hood (ML) [9] and Weighted Subspace Fitting (WSF) [10]
solve a multidimensional nonlinear optimization problem
to obtain a precise estimation, but a good initialization is
required to ensure global convergence and computational
complexity is very high. All these algorithms focus on two
important issues: resolution (i.e., the ability to correctly
resolve two closely spaced sources) and precision (i.e., the
deviation from true DOA) which are considered to be the

theoretical bases of evaluating certain algorithms. Many
high resolution methods suffer from serious performance
degradation in the scenarios with low SNR, small number
of snapshots, and closely spaced corrected sources. More
recently, many research applications involving compressed
sensing (CS) [11], especially DOA estimation [12, 13], have
become more and more popular in the signal processing.
Moreover, the restricted isometry property (RIP) based on
the perfect theoretical framework given with modern prob-
ability theory by Donoho [11] and Candés et al. [14] provides
the performance guarantee in CS. Hence, in this paper, DOA
estimation is posed as a joint sparse recovery problem where
we recover jointly sparse sources frommultiplemeasurement
vectors (MMV) under CS framework.

CS is an emerging area which can break through the limit
of Nyquist sampling theorem. On one hand, CS can simulta-
neously capture and store compressed or sparse source at a
rate much lower than that of Nyquist sampling. On the other
hand, it can recover the original source using nonadaptive
linear projectionmeasurements onto a suitable measurement
matrix which satisfies the RIP. In CS, the joint sparse recovery
aims to find a common support shared by unknown sparse
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vectors from MMV, which is obtained by the measurement
matrix. Support denotes the indices of the nonzero elements
in the unknown sparse vectors. A sparse solution can be
obtained as long as the support is determined.

CS theory has been widely applied to DOA estimation
according to the source sparsity, which results from the fact
that there are much fewer source directions than all poten-
tial directions in the spatial domain. The DOA estimation
methods in CS are attractive since they havemuch better esti-
mation performance than conventional estimation methods.
In [15], Gürbüz et al. firstly formulate the DOA estimation
problem under CS framework in the time domain. Wang
et al. [16] propose a new architecture to estimate DOA by
exploiting compressive sampling in the spatial domain. Stoica
et al. [17] make full use of covariance matching criterion
and present a semiparametric/sparse estimation method and
its derivative called LIKES [18] for the separable model.
Malioutov et al. [19] present the 𝑙

1
-SVD algorithm for DOA

estimation which combines the SVD of the data matrix with
a sparse recovery method based on 𝑙

1
-normminimization. A

new class of subspace-base algorithms such as compressive
MUSIC (CS-MUSIC) [20] and subspace-augmented MUSIC
(SA-MUSIC) [21] is proposed in recent years.

The RIP and various modified versions of it have been
used as a foundation of performance guarantee [21–24] for
the joint sparse recovery. The performance guarantee of
MUSIC based on joint sparse recovery is given for identifying
the unique support in a favorable case [25]. However, in the
unfavorable case where the number of measurement vectors
is smaller than the sparsity or the covariance matrix tends to
lose rank due to correlated sources, performance guarantee
fails. Lee et al. [21] propose a new performance guarantee
in terms of a version of the RIP under such unfavorable
conditions. The performance guarantees of other methods
such as greedy algorithms and convex relaxation have been
developed to find the sparse solution in [23, 24]. However, the
guarantees of thesemethods cannot be simply extended to the
MMV case to obtain a better bound for the sparse solution.

In this paper, we propose a novel augmented Lagrange
based on modified covariance matching criterion method
called AULMC for DOA estimation in CS. This method uti-
lizes the minimization of the modified covariance matching
criterion which is acquired by using regularizationmethod to
add penalties in order to obtain the stable sparse parameter
estimation, especially in the low sparsity case. This mini-
mization problem is shown to be a semidefinite program
(SDP) and transformed into the constrained quadratic pro-
gramming problem for the sake of reducing computational
complexity. The augmented Lagrange function is formed
to solve this problem by the use of augmented Lagrange
method. AULMC has a number of advantages over the other
methods. For example, it provides more precise estimation
and higher resolution in the scenarios with low SNR, small
number of snapshots, and closely spaced correlated sources,
and it does not need priori knowledge about the number
of sources or to choose the regularization parameter of the
𝑙
1
-optimization framework which is very difficult to select

in the DOA estimation. In addition, we give a detailed
derivation process of the closed-form expression for the

Cramér-Rao bound (CRB) of the new method and discuss
an explicit condition that guarantees performance of the new
method. This performance guarantee is given in terms of
weaker version of the RIP which is referred to as weak-1 RIP.
Simulation results illustrate the performance of the proposed
method.

It is worth noting that covariance matching criterion
has been used for DOA estimation [26]. In [26], a sparse
iterative covariance-base estimation method, abbreviated as
SPICE, is proposed. Our approach is different from SPICE
because it utilizes modified covariance matching criterion
which can guarantee the stability of solution even if the source
sparsity is rather low. In the future work, we will focus on the
application of our approach to data-driven design [27–30].
Now we briefly summarize the contributions of this work as
follows.

(i) A modified covariance matching criterion is pro-
posed by adding penalties according to the regular-
ization method.

(ii) The original SDP problem is transformed into the
constrained quadratic programming problem. The
motivation to transform the problem is that it can
reduce computational complexity.

(iii) Augmented Lagrange based on modified covariance
matching criterion method is devised to solve the
resulting programming problem.

(iv) The CRB and performance guarantee of the new
method are given in detail.

The rest of this paper is organized as follows. In
Section 2, we formulate the DOA estimation problem.
Section 3 presents a modified covariance matching criterion.
A novel augmented Lagrange based on modified covariance
matching criterion method for DOA estimation is described
in detail in Section 4; the performance of which is analyzed
in Section 5. The performance of the proposed method
is evaluated by simulations in Section 6. Conclusions are
provided in Section 7.

2. Problem Formulation

Consider 𝐿 narrow-band sources 𝑠
1
, 𝑠
2
, . . . , 𝑠

𝐿
impinging on a

sensor array that consisted of𝑃 omnidirectional sensors from
far field. At time instant 𝑡, the array received source can be
given by

x (𝑡) =
𝐿

∑

𝑘=1

a (𝜃
𝑘
) 𝑠
𝑘
(𝑡) + n (𝑡) , (1)

where n(𝑡) ∈ C𝑃×1 denotes a noise term, 𝜃
𝑘
∈ Ω is the

unknown direction, of the 𝑘th source where Ω denotes the
entire spatial range and a(𝜃

𝑘
) is the 𝑃 × 1 steering vector.

Although the DOA estimation of the single snapshot, which
is a typical single measurement vector (SMV) model, has
its value, the number of snapshots is larger than one in the
most practical applications. Correspondingly, the multiple
snapshots model is a MMVmodel.
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Let {𝜃
𝑘
}
𝐾

𝑘=1
denote a fine grid which covers Ω where

there exist 𝐾 (𝐾 ≫ 𝐿) potential directions of the sources
𝑠
1
, 𝑠
2
, . . . , 𝑠

𝐾
so that the true directions {𝜃

𝑘
}
𝐿

𝑘=1
are aligned or

are close to the grids. This means that if 𝜃
𝑘
1

, 𝜃
𝑘
2

, . . . , 𝜃
𝑘
𝐿

are
equal to 𝜃

1
, 𝜃
2
, . . . , 𝜃

𝐿
, respectively, we have

𝑠
𝑘
= {

𝑠
𝑙
, 𝑘 = 𝑘

𝑙
(𝑙 = 1, 2, . . . , 𝐿) ,

0, elsewhere.
(2)

Hence, themultiple snapshotsmodel can bewritten as the
following sparse form:

x (𝑡) =
𝐾

∑

𝑘=1

a (𝜃
𝑘
) 𝑠
𝑘
(𝑡) + n (𝑡) = As (𝑡) + n (𝑡) ,

𝑡 = 𝑡
1
, 𝑡
2
. . . 𝑡
𝑀
,

(3)

whereA = [a(𝜃
1
) a(𝜃

2
) ⋅ ⋅ ⋅ a(𝜃

𝐾
)] is the 𝑃×𝐾manifold

matrix corresponding to all the potential directions which is
also referred to as an overcomplete dictionary in CS. s(𝑡) =
[𝑠1(𝑡) 𝑠

2
(𝑡) ⋅ ⋅ ⋅ 𝑠

𝐾
(𝑡)]
𝑇 is a 𝐿-sparse vector since it has at

most 𝐿 nonzero elements in 𝐾 elements, and 𝐿 is defined as
sparsity where the operator [⋅]𝑇 denotes transport. {s(𝑡

𝑖
)}
𝑀

𝑖=1

are jointly 𝐿-sparse if they share a common support. Hence,
the matrix S = [s(𝑡1) s(𝑡

2
) ⋅ ⋅ ⋅ s(𝑡

𝑀
)] ∈ C𝐾×𝑀 has no more

than 𝐿 nonzero rows in order to be called row 𝐿-sparse. The
MMV problem is that of identifying the row support of the
unknownmatrix S from the matrixY ∈ C𝑁×𝑀 that consisted
of MMV which is given by

Y = [y (𝑡
1
) y (𝑡

2
) ⋅ ⋅ ⋅ y (𝑡

𝑀
)] = ΦAS +ΦN (4)

with a common measurement matrix Φ of the size 𝑁 × 𝑃

with 𝑁 < 𝑃 where 𝑁 is the number of nonadaptive linear
projection measurements, such as random Gaussian matrix
or random partial Fourier matrix, and noise matrix N.

3. Modified Covariance Matching Criterion

In this section, the modified covariance matching criterion
is developed in the CS scenario. A conventional covariance
matrix of the compressed measurement source with the size
𝑁 ×𝑁 is given by

R
𝑦
= 𝐸 [y (𝑡) y∗ (𝑡)] = ΦAR

𝑠
A∗Φ∗ +ΦR

𝑛
Φ
∗
, (5)

where R
𝑠
= 𝐸[s(𝑡)s∗(𝑡)] is a 𝐾 × 𝐾 covariance matrix of

the sparse source whose off-diagonal elements denote the
source correlation and diagonal elements denote the source
powers. Since the powers are one-to-one corresponding to
all the potential directions and our focus is on the source
angle parameter estimation, R

𝑠
can be reduced to a diagonal

matrix R
𝑠
(�̃�) = diag (𝜃

1
𝜃
2
⋅ ⋅ ⋅ 𝜃
𝐾
). According to (5), the

measurement matrix can change the covariance matrix of the
noise to render the noise colored even if the noise is white.
Therefore, this adverse factor must be considered before
recovering jointly sparse sources. In addition, the operators
(⋅)
∗ and 𝐸[⋅] denote conjugate transpose and expectation,

respectively.

Since ΦR
𝑛
Φ
∗ is a positive definite Hermitian matrix, a

prewhitenedmethod is given by theCholesky decomposition.
Let B be the Cholesky factor that satisfies

(ΦR
𝑛
Φ
∗
)
−1

= B∗B, (6)

where B ∈ C𝑁×𝑁 is an upper triangular matrix of positive
line. Hence, a prewhitened process is implemented by mul-
tiplying y(𝑡) by B in order to obtain a pure source whose
covariance matrix is written as

R̃
𝑦
= BΦAR

𝑠
A∗Φ∗B∗ + I

𝑁
= CR
𝑠
C∗ + I

𝑁
, (7)

where C = [c
1
, c
2
, . . . , c

𝐾
] and I

𝑁
is an identity matrix of

the size 𝑁 × 𝑁. It is important to note that the unknown
covariance matrix of the noise is transformed into the known
identity matrix after the prewhitened process. Therefore, the
prewhitened method improves the robustness to the noise.
Then, the covariance matrix of the compressed measurement
source denoising is realized by

R = R̃
𝑦
− I
𝑁
= CR
𝑠
C∗. (8)

The parameter �̃� can be estimated by a class of the
covariance matching estimation techniques (COMET) based
on covariance matching criterion [31]. This parameter esti-
mation method is well known to be a large-sample approxi-
mation of MLmethod and provide a more attractive solution
than ML estimator.

The principle of COMET is that of using the right data to
minimize its datamodel by the weighted least-squares (WLS)
method. However, the lower the source sparsity is, the more
likely it is to be ill-posed for the covariance matrix estimation
error meaning that the optimal solution obtained directly by
minimizing the conventional covariance matching criterion
is instable. Hence, we employ regularization method to add
penalties in order to sufficiently exploit prior knowledge to
reduce the solution space for determining the stable optimal
solution. The modified covariance matching criterion is
proposed as the following form:

[vec (R̂) − vec (R (�̃�))]
∗

Γ
∗P−1Γ [vec (R̂) − vec (R (�̃�))]

+ 𝛼Tr [R−1 (�̃�) − R̂−1] + 𝛽Tr[
R−1 (�̃�) R̂−1

4
] ,

(9)

where parameter 𝛼 ≥ 0 controls the solution smoothness
(guarantee precision), parameter 𝛽 ≥ 0 controls the solution
scale (guarantee sparsity), the inverses of the matrix Γ, the
sample covariance matrix R̂, and R(�̃�) are assumed to exist,
and the matrix P−1 is the inverse of the covariance matrix
of the residuals, �̃� = Γ vec(R̂ − R(�̃�)). Since R̂ is equal to
R(�̃�) as 𝑀 → ∞, it follows from [32] that vec(R̂ − R(�̃�))
satisfies the asymptotic normal distribution with mean zero
and variance𝑁−1R𝑇(�̃�) ⊗ R̂. In addition, the operators Tr[⋅],
vec(⋅), and ⊗ denote matrix trace, column stacking operation,
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and Kronecker product, respectively. Then, the matrix P can
be given by

P = 𝐸 [�̃� (�̃�) �̃�∗ (�̃�)]

= Γ𝐸 [vec (R̂ − R (�̃�)) vec∗ (R̂ − R (�̃�))] Γ∗

= Γ𝑁
−1R𝑇 (�̃�) ⊗ R̂Γ∗ = Γ𝑁−1DΓ∗.

(10)

We consider the normalized datamodel in (9) and choose
the regularization parameters𝛼 = 𝛽 = 𝑁 based on perceptual
criterion [33]. By substituting (10) into (9), we have

vec∗ (R̂ − R (�̃�))D−1 vec (R̂ − R (�̃�))

+ Tr [R−1 (�̃�) − R̂−1] +
Tr [R−1 (�̃�) R̂−1]

4
.

(11)

By the properties of vec, ⊗, and Tr, the data model can be
further simplified to

vec∗ (R̂ − R (�̃�))D−1 vec (R̂ − R (�̃�))

+ Tr [R−1 (�̃�) (R̂ − R (�̃�)) R̂−1] +
Tr [R−1 (�̃�) R̂−1]

4

=


R̂−1/2 (R̂ − R (�̃�) + I

𝑁

2
)R−1/2 (�̃�)



2

,

(12)

where ‖ ⋅ ‖ denotes the Frobenius norm for matrices or
the Euclidean norm for vectors. The data model in (12) is
considered to be the modified covariance matching criterion.
It can be seen from (12) that a positive definite Hermitian
matrix is added to the covariance matrix estimation error
by applying penalties according to regularization method in
order to guarantee the stability of solution.

4. DOA Estimation

In this section, we will utilize the minimization of the mod-
ified covariance matching criterion to estimate parameter �̃�.
Let

�̃�
𝑠
= argmin

�̃�


R̂−1/2 (R̂ − R (�̃�) + I

2
)R−1/2 (�̃�)



2

(13)

be the optimal solution of �̃� in the structuremodel of (8).Our
goal is to utilize the modified covariance matching criterion
for an estimate that is asymptotically equal to �̃�

𝑠
. By the

properties of the trace and theHermitianmatrix, a derivation
process is shown as follows, where we omit the dependence
on �̃� for notational convenience:

𝑓 = Tr [R̂−1 (R̂ − R + I
2
)R−1 (R̂ − R + I

2
)]

= Tr [R̂−1R − R̂−1 + (R̂1/2 + 1

2
R̂−1/2)

⋅R−1/2 (R̂1/2 + 1

2
R̂−1/2)R−1/2] .

(14)

Due to

Tr [R̂−1R] =
𝐾

∑

𝑘=1

(c∗
𝑘
R̂−1c
𝑘
) 𝜃
𝑘

(15)

we can deduce that the minimization of 𝑓 is equal to the
minimization of ℎ:

ℎ = Tr [(R̂1/2 + 1

2
R̂−1/2)R−1/2 (R̂1/2 + 1

2
R̂−1/2)R−1/2]

+

𝐾

∑

𝑘=1

(c∗
𝑘
R̂−1c
𝑘
) 𝜃
𝑘
.

(16)

Then, we will demonstrate that the minimization of ℎ in
(16) with respect to {𝜃

𝑘
}
𝐾

𝑘=1
is an SDP. To prove this fact, One

assumes

R̂1/2 + 1

2
R̂−1/2 = [r1 r

2
⋅ ⋅ ⋅ r
𝑁] . (17)

The ℎ in (16) can be rewritten as

ℎ =

𝑁

∑

𝑘=1

r∗
𝑘
R−1r
𝑘
+

𝐾

∑

𝑘=1

(c∗
𝑘
R̂−1c
𝑘
) 𝜃
𝑘
. (18)

By the Schur complement, let {𝑥
𝑘
}
𝑁

𝑘=1
be auxiliary vari-

ables satisfying

[
𝑥
𝑘

r∗
𝑘

r
𝑘

R] ≥ 0. (19)

The equivalent form of this minimization problem is
expressed as

min
𝑥
𝑘
, 𝜃
𝑘

𝑁

∑

𝑘=1

𝑥
𝑘
+

𝐾

∑

𝑘=1

(c∗
𝑘
R̂−1c
𝑘
) 𝜃
𝑘

s.t. 𝜃
𝑘
≥ 0, 𝑘 = 1, 2, . . . , 𝐾,

[
𝑥
𝑘

r∗
𝑘

r
𝑘

R] ≥ 0, 𝑘 = 1, 2, . . . , 𝑁.

(20)

It is easy to see that (20) is an SDP [34]. Many software
packages can solve an SDP, but solving (16) as an SDP is
not a good choice because SDP solvers have generally rather
high computational complexity for the values of𝑁,𝑀, and𝐾
in the DOA estimation. To solve it effectively, we transform
it into the constrained quadratic programming problem for
reducing computational complexity, as described next.

Since a consistent estimation of �̃� is given by (15), we can
reformulate the minimization of ℎ in (16) as the following
constrained minimization by the Schur inequality of the
trace:

min
𝜃
𝑖
≥0

Tr [(R̂1/2 + 1

2
R̂−1/2)R−1/2 (R̂1/2 + 1

2
R̂−1/2)R−1/2]

s.t. Wz = 1
𝐾
,

(21)
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whereW is a𝐾×𝐾 diagonal matrix of [C∗R̂−1C]−1/2 and z =
[𝑧1 𝑧2 ⋅ ⋅ ⋅ 𝑧𝐾]

𝑇 is a 𝐾-dimensional vector with 𝑧
𝑖
= 𝜃
−1/2

𝑖
,

𝑖 = 1, 2, . . . , 𝐾. By substituting (8) into (21), the objective
function in (21) can be rewritten as

Tr [(R̂1/2 + 1

2
R̂−1/2) (C∗)−1/2R−1/2

𝑠
C−1/2

⋅ (R̂1/2 + 1

2
R̂−1/2) (C∗)−1/2R−1/2

𝑠
C−1/2]

= Tr [C−1/2 (R̂1/2 + 1

2
R̂−1/2) (C∗)−1/2R−1/2

𝑠

⋅C−1/2 (R̂1/2 + 1

2
R̂−1/2) (C∗)−1/2R−1/2

𝑠
] .

(22)

Based on the following equation:

Tr [MT (d)NT (d)] = d∗ (M𝑇 ⊙ N) d, (23)

where ⊙ denotes the Schur-Hadamard product,M and N are
both𝐾×𝐾matrices,T(d) = diag(𝑑

1
𝑑
2

⋅ ⋅ ⋅ 𝑑
𝐾
), and d =

[𝑑1 𝑑2 ⋅ ⋅ ⋅ 𝑑𝐾]
𝑇, the objective function (22) can be written

as

Tr [QR−1/2
𝑠

QR−1/2
𝑠

] = z∗Vz, (24)

whereQ = C−1/2(R̂1/2+(1/2)R̂−1/2)(C∗)−1/2 andV = Q𝑇⊙Q.
Hence, the minimization problem in (21) is transformed into
the following form:

min
𝑧

𝑓 (z) = z∗Vz

s.t. Π (z) = Wz − 1
𝐾
= 0
𝐾

(25)

which is a typical constrained quadratic programming prob-
lem.

It is well known that an important class of methods for
solving the constrained quadratic programming problem is
to form the auxiliary function. To solve (25), we form the
following augmented Lagrange function with respect to (25):

p
𝜎
(z,𝜇) = 𝑓 (z) + 𝜇∗Π (z) + 1

2
𝜎‖Π (z)‖2, (26)

where 𝜇 is the asymptotical solution of the Lagrange multi-
plier of (25) and 𝜎 is a penalty factor.

By setting the gradient and the Hessian matrix of (26)
with respect to z to zero, we have

∇zp𝜎 (z,𝜇) = ∇z𝑙 (z,𝜇) + 𝜎q (z)Π (z) ,

∇
2

zzp𝜎 (z,𝜇) = ∇
2

zz𝑙 (z,𝜇) + 𝜎
𝐾

∑

𝑖=1

Π
𝑖
(z) ∇2Π (z)

+ 𝜎q (z) q∗ (z) ,

(27)

where 𝑙(z,𝜇) = 𝑓(z) + 𝜇∗Π(z) and q(z) = ∇Π
∗
(z) =

[∇Π1(z) ∇Π
2
(z) ⋅ ⋅ ⋅ ∇Π

𝐾
(z)]. One assumes that

b (z,𝜇) = ∇2zz𝑙 (z,𝜇) + 𝜎
𝐾

∑

𝑖=1

Π
𝑖
(z) ∇2Π (z) . (28)

Applying the Newton method, we obtain

∇
2

zzp𝜎𝑘 (z𝑘,𝜇𝑘) (z𝑘+1 − z
𝑘
) = −∇zp𝜎

𝑘

(z
𝑘
,𝜇
𝑘
) . (29)

For notational convenience, we assume that q
𝑘
= q(z

𝑘
),

∇𝑓
𝑘
= ∇𝑓(z

𝑘
), Π
𝑘
= Π(z

𝑘
), b
𝑘
= b(z
𝑘
,𝜇
𝑘
), d
𝑘
= z
𝑘+1

− z
𝑘
and

we get the following equation by (29):

b
𝑘
d
𝑘
+ 𝜎
𝑘
q
𝑘
q∗
𝑘
d
𝑘
+ ∇z𝑙 (z𝑘,𝜇𝑘) + 𝜎𝑘q𝑘Π𝑘 = 0. (30)

Assuming that the inverse of b
𝑘
exists, by left-multiplying

(30) by (1/𝜎
𝑘
)q∗
𝑘
b−1
𝑘
, we have

(
I
𝐾

𝜎
𝑘

+ q∗
𝑘
b−1
𝑘
q
𝑘
) q∗
𝑘
d
𝑘

= −q∗
𝑘
b−1
𝑘
q
𝑘
Π
𝑘
−
1

𝜎
𝑘

q∗
𝑘
b−1
𝑘
∇z𝑙 (z𝑘,𝜇𝑘) .

(31)

It follows from (31) that

q∗
𝑘
b
𝑘
= −Π
𝑘
+
𝛼
𝑘

𝜎
𝑘

, (32)

where 𝛼
𝑘
satisfies

(
I
𝐾

𝜎
𝑘

+ q∗
𝑘
b−1
𝑘
q
𝑘
)𝛼
𝑘
= −q∗
𝑘
b−1
𝑘
∇z𝑙 (z𝑘,𝜇𝑘) +Π𝑘. (33)

By substituting (32) into (30), we have

d
𝑘
= −b−1
𝑘
(q
𝑘
𝛼
𝑘
+ ∇z𝑙 (z𝑘,𝜇𝑘)) . (34)

Both the multiplier factor and the penalty factor are deter-
mined with difficulty for utilizing the augmented Lagrange
function to solve the constrained quadratic programming
problem. Hence, an updated sequence for the multiplier
factor is given in terms of Proposition 1.

Proposition 1. One assumes that 𝜇(z) is the optimal solution
of the problem min𝜇∈C𝐾‖q(z)𝜇 + ∇𝑓(z)‖

2. Then, the following
equation holds:

𝜇 (z
𝑘
) = 𝜇
𝑘
+ 𝛼
𝑘
+ 𝛽
𝑘
d
𝑘
, (35)

where 𝛽
𝑘
= (q∗
𝑘
q
𝑘
)
−1q∗
𝑘
b
𝑘
.

Proof. See Appendix A.

It can be deduced from Proposition 1 that 𝜇
𝑘
+ 𝛼
𝑘
is

referred to as the next iteration of 𝜇
𝑘
. We apply a heuristic

update sequence for the penalty factor to achieve a stable
solution. If the 𝑘th iterative solution z

𝑘
is closer to the feasible

region than the previous solution z
𝑘−1

, the penalty factor is
decreased. Inversely, we increase the penalty factor when z

𝑘

is not closer to the feasible region.
The specific steps of solving by the augmented Lagrange

method are given as follows.
Initialization: set 𝑘 = 1, z

1
∈ C𝐾, 𝜎

1
> 0, 𝜏 ∈ (0, 1), and

𝜇
1
= −(q∗

1
q
1
)
−1q∗
1
∇𝑓
1
.
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(1) Calculate𝛼
𝑘
andd
𝑘
in terms of (33) and (34). If ‖d

𝑘
‖ ≃

0, z
𝑘
is the KKT point of the problem (25); then stop

iteration.

(2) We use Armijo search method to find the maximum
of 𝑡
𝑘
satisfying

p
𝜎
𝑘

(z
𝑘
+ 𝑡
𝑘
d
𝑘
,𝜇
𝑘
) ≤ p
𝜎
𝑘

(z
𝑘
,𝜇
𝑘
) + 𝜏𝑡

𝑘
∇p∗
𝜎
𝑘

(z
𝑘
,𝜇
𝑘
) d
𝑘
.

(36)

(3) Set z
𝑘+1

= z
𝑘
+ 𝑡
𝑘
d
𝑘
and update the multiplier factor

and penalty factor, respectively:

𝜇
𝑘+1

= 𝜇
𝑘
+ 𝛼
𝑘
,

𝜎
𝑘+1

=

{{

{{

{

2𝜎
𝑘

if Π (𝑧𝑘+1)
 >

Π (𝑧𝑘)
 ,

1

2
𝜎
𝑘

if Π (𝑧𝑘+1)
 ≤

Π (𝑧𝑘)
 .

(37)

(4) Set 𝑘 = 𝑘 + 1 and return to step (1).

5. Performance Analysis

5.1. Cramér-Rao Bound. In this subsection, the closed-form
expression for the CRB of the proposed method with com-
plex white Gaussian noise after the prewhitened process is
illustrated. The bound of the noise variance estimation can
be computed separately as CRB

𝑛
= 1/𝑁𝑀 (see [35]). The

remaining parameters consist of an unknown vector 𝜑 =

[�̃�
𝑇

s𝑇]
𝑇

. It is not an easy task to get theCRB of the unknown
parameters. However, fortunately, [36, 37] have provided a
critical inspiration for the derivation in this paper.

First, the likelihood function is given by

𝐿(
y

s (𝑡
𝑗
)
, �̃�) =

1

(2𝜋)
𝑀𝑁

(1/2)
𝑀𝑁

⋅ exp
{

{

{

−

𝑀

∑

𝑗=1

(y (𝑡
𝑗
) − BΦAs (𝑡

𝑗
))
∗

× (y (𝑡
𝑗
) − BΦAs (𝑡

𝑗
))
}

}

}

.

(38)

Thus, the log-likelihood function is

ln 𝐿(
y

s (𝑡
𝑗
)
, �̃�) = const −

𝑀

∑

𝑗=1

(y (𝑡
𝑗
) − BΦAs (𝑡

𝑗
))
∗

× (y (𝑡
𝑗
) − BΦAs (𝑡

𝑗
)) .

(39)

Then, the partial derivatives of (39) with respect to �̃�,
s
𝑟
(𝑡
𝑗
) = Re{s(𝑡

𝑗
)} and s

𝑖
(𝑡
𝑗
) = Im{s(𝑡

𝑗
)} are given by

𝜕 ln 𝐿
𝜕�̃�

= 2

𝑀

∑

𝑗=1

Re {S∗
𝑗
U∗Φ∗B∗n (𝑡

𝑗
)} ,

𝜕 ln 𝐿
𝜕s
𝑟
(𝑡
𝑗
)
= 2Re {A∗Φ∗B∗n (𝑡

𝑗
)} ,

𝜕 ln 𝐿
𝜕s
𝑖
(𝑡
𝑗
)
= 2 Im {A∗Φ∗B∗n (𝑡

𝑗
)} ,

(40)

where S
𝑗
= diag(s(𝑡

𝑗
)) and U = [𝑑a(𝜃

1
)/𝑑𝜃
1

𝑑a(𝜃
2
)/

𝑑𝜃
2

⋅ ⋅ ⋅ 𝑑a(𝜃
𝐾
)/𝑑𝜃
𝐾
]. Following [35, 37], we can obtain

the Fisher information matrix (FIM) as follows:

FIM = Λ − [Δ
1𝑟
Δ
1𝑖
Δ
2𝑟

⋅ ⋅ ⋅ Δ
𝑀𝑖
Δ
𝑀𝑟
]

⋅

[
[
[
[
[
[
[

[

G
𝑟
−G
𝑖
0 ⋅ ⋅ ⋅ 0

G
𝑖

G
𝑟

d
...

0 d 0

... d G
𝑟
−G
𝑖

0 ⋅ ⋅ ⋅ 0 G
𝑖

G
𝑟

]
]
]
]
]
]
]

]

⋅

[
[
[
[
[
[
[
[

[

Δ
1𝑟

Δ
1𝑖

Δ
2𝑟

...
Δ
𝑀𝑟

Δ
𝑀𝑖

]
]
]
]
]
]
]
]

]

,

(41)

where

𝐸{
𝜕 ln 𝐿
𝜕�̃�

(
𝜕 ln 𝐿
𝜕�̃�

)

𝑇

} = Λ

= 2

𝑀

∑

𝑗=1

Re {S∗
𝑗
U∗Φ∗B∗BΦUS

𝑗
} ,

𝐸
{

{

{

𝜕 ln 𝐿
𝜕s
𝑟
(𝑡
𝑘
)
(

𝜕 ln 𝐿
𝜕s
𝑖
(𝑡
𝑝
)
)

𝑇

}

}

}

= −G−1
𝑖
= −Im {G−1}

= −Im {2A∗Φ∗B∗BΦA} 𝛿
𝑘𝑝
,

𝐸
{

{

{

𝜕 ln 𝐿
𝜕s
𝑟
(𝑡
𝑘
)
(

𝜕 ln 𝐿
𝜕s
𝑟
(𝑡
𝑝
)
)

𝑇

}

}

}

= 𝐸
{

{

{

𝜕 ln 𝐿
𝜕s
𝑖
(𝑡
𝑘
)
(

𝜕 ln 𝐿
𝜕s
𝑖
(𝑡
𝑝
)
)

𝑇

}

}

}

= G−1
𝑟
= Re {G−1}

= Re {2A∗Φ∗B∗BΦA} 𝛿
𝑘𝑝
,

𝐸{
𝜕 ln 𝐿
𝜕s
𝑟
(𝑡
𝑗
)
(
𝜕 ln 𝐿
𝜕�̃�

)

𝑇

} = Re {Δ
𝑗
} = Δ

𝑗𝑟

= Re {2A∗Φ∗B∗BΦUS
𝑗
} ,

𝑗 = 1, 2, . . . ,𝑀,
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𝐸{
𝜕 ln 𝐿
𝜕s
𝑖
(𝑡
𝑗
)
(
𝜕 ln 𝐿
𝜕�̃�

)

𝑇

} = Im {Δ
𝑗
} = Δ

𝑗𝑖

= Im {2A∗Φ∗B∗BΦUS
𝑗
} ,

𝑗 = 1, 2, . . . ,𝑀.

(42)

It is well known that

[Δ
𝑇

𝑟
Δ
𝑇

𝑖
] [

G
𝑟
−G
𝑖

G
𝑖

G
𝑟

] [
Δ
𝑟

Δ
𝑖

] = Re {Δ∗GΔ} . (43)

It can be deduced from (41) and (43) that

CRB (�̃�) = FIM−1

=
1

2

{

{

{

𝑀

∑

𝑗=1

Re {S∗
𝑗
U∗H∗ (I −HA(HA)+)HUS

𝑗
}
}

}

}

−1

,

(44)

where H = BΦ is a 𝑁 × 𝑃 matrix and (⋅)
+ denotes

pseudoinverse. Note that the CRB in CS is affected not only
by the conventional factors, for example, SNR, array structure
and signal relative location, but also by the measurement
matrix.

5.2. Performance Guarantee. In CS, the RIP has been deeply
studied for the joint sparse recovery by minimizing the 𝑙

1

norm. We say that the matrix C ∈ C𝑁×𝐾 obeys the RIP of
the order 𝐿 if there exists a constant 𝛿 ∈ (0, 1) satisfying

(1 − 𝛿) ‖s‖2
2
≪ ‖Cs‖2

2
≪ (1 + 𝛿) ‖s‖2

2
. (45)

Therefore, all submatrices of C with L columns are
uniformly well conditioned.The restricted isometry constant
(RIC) of the order L, described as 𝛿

𝐿
(C), is the smallest 𝛿 that

satisfies (45) and 𝛿
𝐿
(C) satisfies

𝛿
𝐿
(C) = max

|𝐽|=𝐿


C∗
𝐽
C𝐽 − I

𝐿


, (46)

where 𝐽 is a 𝐿-dimensional subsupport of 𝐽 = [1, 2, . . . , 𝐾]

and C
𝐽
 denotes the submatrix of C with columns indexed by

𝐽
. Note that the condition satisfying the RIP is so demanding
that its applications are limited. Therefore, we should make
use of a new version of the RIP, which is called the weak-1
RIP [38], to control the size of the recovery error. The weak-1
RIP is given in the following form:

(1 − 𝛼) ‖k‖2
2
≪ ‖Ck‖2

2
≪ (1 + 𝛼) ‖k‖2

2
(47)

for all k supported on 𝑈, where the cardinality of the set 𝑈 is
𝐿+1. If thematrixC satisfies theweak-1 RIP, it can be deduced
that 0 ≤ 𝛼 ≤ 𝜙

𝐿+1
(C
𝑈
), where 𝜙

𝑘
(C
𝑈
) denotes the 𝑘th largest

eigenvalue of C
𝑈
. The corresponding weak-1 RIC is given by

𝛼
𝑤

𝐿+1
(C; 𝑈) = min𝜙

𝐿+1
(C
𝑈
) . (48)

In this paper, when the estimation quality is imperfect,
especially in the unfavorable case, the support is no longer
identified by the algebraic property of R. Hence, a new
performance guarantee is given in terms of the weak-1 RIP
in the following proposition.

Proposition 2. One assumes that F = R̂1/2 + (1/2)R̂−1/2

and R−1 = ΨR−1
𝑠
(�̃�)Ψ
∗ where Ψ = [𝜓1 𝜓2 . . . 𝜓𝐾]. �̂�

is an estimation that is asymptotically equal to �̃�
𝑠
such that

| tr(R−1(�̂�)) − tr(R−1(�̃�
𝑠
))| ≤ 𝜂 for 𝜂 ∈ (0, 1/2‖F‖2

2
). Let 𝐽

0

and 𝐽
1
= {𝑗
𝑖
}
𝐿

𝑖=1
be the L-dimensional supports that consisted

of the indexes of 𝐿 largest elements in �̃�
𝑠
and �̂�, respectively. If

the matrix R satisfies

𝛼
𝑤

𝐿+1
(R; 𝐽
0
) > 𝜅 (49)

for

𝜅 ≥
𝐿‖F‖2
2
∑
𝑗∈𝐽
0

𝜓
∗

𝑗
𝜓
𝑗

1 − 2𝜂‖F‖2
2

(50)

the support can be identified.

Proof. See Appendix B.

It follows from Proposition 2 that the performance guar-
antee of the proposed method requires a mild condition
in the unfavorable case. However, in the favorable case,
the performance guarantee only requires a much milder
condition, 𝛼𝑤

𝐿+1
(R; 𝐽
0
) > 0, which is an algebraic condition.

6. Simulation Results

In this section, the performance of the proposed method is
illustrated by several simulation results and compared with
that of CS-MUISC, SPICE, and CRB under the condition that
the number of sources is unknown. We consider the spatial
signal impinging on the uniform linear array (ULA) with
interspacing𝜆/2where𝜆denotes thewavelength of source. In
the ULA case, the steering vector corresponding to the DOA
equal to 𝜃

𝑘
is given by

a (𝜃
𝑘
) = [1 𝑒

−𝑗𝜋 sin(𝜃
𝑘
)
⋅ ⋅ ⋅ 𝑒
−𝑗(𝑃−1)𝜋 sin(𝜃

𝑘
)
]
𝑇

, (51)

where the number of the array elements is set to be 𝑃 = 8.
In the simulation, the average root mean square error

(RMSE) of the DOA estimation with 50 Monte Carlo runs
is defined as the significant performance index:

RMSE = [

[

50

∑

𝑚=1

𝐿

∑

𝑙=1

(𝜃
𝑙𝑚
− 𝜃
𝑙
)
2

50𝐿

]

]

1/2

, (52)

where 𝜃
𝑙𝑚

is the estimate of 𝜃
𝑙
in the𝑚th run.

The resolution of the grid is closely related to the precision
of the DOA estimation. A coarse grid can lead to poor preci-
sion, but a too fine grid increases computational complexity.
Therefore, an adaptive grid refinement method is used to
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Figure 1: Superimposed spatial spectra of CS-MUSIC, SPICE, and
AULMC in 10Monte Carlo runs, where the red vertical dashed lines
denote the true DOAs. (a) CS-MUSIC, (b) SPICE and (c) AULMC.

balance the tradeoff between precision and computational
complexity. In the simulation, we make a coarse grid with 1∘
step in the range of −90∘ to 90∘ and perform a local fine grid
in the vicinity of locations obtained by using the coarse grid.

In the first simulation, we display the superimposed spa-
tial spectra of three algorithms in 10 Monte Carlo runs in the
scenario with low SNR, small number of snapshots, and five
sources impinging from [−40.3

∘
−25
∘
5.2
∘
15.2
∘
38.1
∘
],

respectively where two most closely spaced sources are
correlated and the remaining sources are uncorrelated. The
spatial spectra are shown in Figure 1 with 3 dB SNR and 50
snapshots. The following facts can be acquired from Figure 1
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Figure 2: RMSE of the DOA estimation versus SNR for 50
snapshots.
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Figure 3: RMSE of theDOA estimation versus number of snapshots
for 5 dB SNR.

as follows: the spatial spectrum obtained by CS-MUSIC suf-
fers from severe interference at the true directions, especially
at two most closely spaced correlated sources whose bias
is clearly seen from the insert. Two most closely spaced
correlated sources can be resolved by SPICE (note that peaks
in the spatial spectrum are much larger than 2, but they are
cut off at 2 to use the same scale as the other figures in
Figure 1), but SPICE can yield false peaks and slight bias in the
vicinity of the correlated sources and uncorrelated sources,
respectively. The proposed method AULMC yields a nearly
ideal spatial spectrum and provides a precise estimation
for all the sources. In summary, AULMC outperforms CS-
MUSIC and SPICE in terms of the spatial spectrum in the
scenario with low SNR, small number of snapshots, and
closely spaced correlated sources.

We analyze the RMSE of three algorithms under different
conditions in the second simulation. The source model is the
same as the first simulation. Figure 2 shows the RMSE as a
function of SNR of all the algorithms and CRB in 50 Monte
Carlo runs for the fixed number of snapshots 50, whereas the
RMSE versus number of snapshots is shown in Figure 3 for
the fixed SNR5 dB in 50MonteCarlo runs. Based onFigures 2
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Figure 4: RMSE of the DOA estimation versus angle separation,
where the SNR is 13 dB and the number of snapshots is 100.

Table 1: Comparison of computation time.

Number of snapshots Time (sec)
AULMC CS-MUSIC SPICE SDP solver

50 0.0651 0.0569 0.0601 0.7526
75 0.0776 0.0604 0.0714 0.8871
100 0.0860 0.0640 0.0819 1.0268
125 0.0974 0.0691 0.0923 1.3018

and 3, we can draw the conclusions that the RMSE ofAULMC
is smaller than those of other two algorithms andAULMChas
the more significant performance advantages than the other
two algorithms, especially in the scenarios with low SNR or
small number of snapshots. One possible explanation is that
AULMC can give the stable estimation in every Monte Carlo
run. It can be also seen that the RMSE is close to the CRBwith
the increase of SNR and the number of snapshots.

In Figure 4, we display the relation between the RMSE
and angel separation of correlated sources which can illus-
trate the resolving ability. Let two correlated sources at angles
20
∘ and 20∘+Δ𝜃, where the step ofΔ𝜃 is 1∘, be impinged on the

ULA. The SNR is 13 dB and the number of snapshots is 100.
It can be seen from Figure 4 that when angle separation is 2∘,
AULMC fails; however, AULMC can still provide a precise
estimation as long as the angle separation is no less than 3∘
and has higher resolution than the other two algorithms.

Finally, the computation time of different algorithms
versus number of snapshots is shown inTable 1 for comparing
the efficiency of these algorithms and SDP solver. Two
correlated sources impinge on the ULA at 20∘ and 25∘. The
SNR is fixed at 13 dB.The computation time is obtained by the
MATLAB 7.8 (R2009a) on a 2.8GHz 4GB PC. For AULMC,
the computation time is mainly spent on the iterations of
augmented Lagrange.

It can be seen from Table 1 that the computation time
of SDP solver is the longest, and although the computation
time of AULMC is longer than that of other two algorithms,
it is comparable. Moreover, it is worth noting that the

performance of AULMC is much better than that of CS-
MUSIC or SPICE.

7. Conclusion

A novel augmented Lagrange based on modified covariance
matching criterion method for DOA estimation is proposed
in CS. It is proved that the problem of minimizing the
modified covariance matching criterion is an SDP, which can
be transformed into the constrained quadratic programming
problem solved by the augmented Lagrange method. A
detailed derivation for the CRB and a theoretical perfor-
mance guarantee for identifying the support are provided.
Simulation results show that AULMC outperforms CS-
MUSIC and SPICE in terms of the spatial spectrum and
has more precise estimation as well as higher resolution,
especially in the scenarios with low SNR, small number of
snapshots, and closely spaced correlated sources.

Appendices

A. Proof of Proposition 1

Due to 𝜇(z
𝑘
) = −(q∗

𝑘
q
𝑘
)
−1q∗
𝑘
∇𝑓
𝑘
, we have

q∗
𝑘
q
𝑘
𝜇 (z
𝑘
) = −q∗

𝑘
∇𝑓
𝑘
. (A.1)

With (34) and (A.1), we get

q∗
𝑘
q
𝑘
[𝜇 (z
𝑘
) − 𝜇
𝑘
− 𝛼
𝑘
] = q∗
𝑘
b
𝑘
d
𝑘
. (A.2)

Therefore, it is implied by (A.2) that (35) holds and the
proof of Proposition 1 is completed.

B. Proof of Proposition 2

The support 𝐽
0
can be identified if

max
𝑗∈𝐽
0

Tr [FR−1/2 (�̂�) FR−1/2 (�̂�)]
Tr [F2]

< min
𝑗∈𝐽\𝐽
0

Tr [FR−1/2 (�̂�) FR−1/2 (�̂�)]
Tr [F2]

.

(B.1)

By the Cauchy-Schwarz inequality of the trace, we have



Tr [(FR−1/2 (�̂�))
2

] − Tr [(FR−1/2 (�̃�
𝑠
))
2

]

Tr [F2]



≤
Tr [F2] ⋅ Tr [R

−1
(�̂�)] − Tr [R−1 (�̃�

𝑠
)]


Tr [F2]

=

Tr [R−1 (�̂�)] − Tr [R−1 (�̃�

𝑠
)]

≤ 𝜂.

(B.2)
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Then, for all 𝑗 ∈ 𝐽
0
we have

Tr [(FR−1/2 (�̂�))
2

]

Tr [F2]
≤ 𝜂 +

Tr [(FR−1/2 (�̃�
𝑠
))
2

]

Tr [F2]

≤ 𝜂 +
Tr [F2]Tr [R−1 (�̃�

𝑠
)]

Tr [F2]

= 𝜂 +
∑
𝑗∈𝐽
0

𝜓
∗

𝑗
𝜓
𝑗

𝜃
𝑗

≤ 𝜂 +
𝐿∑
𝑗∈𝐽
0

𝜓
∗

𝑗
𝜓
𝑗

𝛼𝑤
𝐿+1

(R; 𝐽
0
)
.

(B.3)

Thus, an upper bound on the left-band side of (B.1) is
given by

max
𝑗∈𝐽
0

Tr [(FR−1/2 (�̂�))
2

]

Tr [F2]
≤ 𝜂 +

𝐿∑
𝑗∈𝐽
0

𝜓
∗

𝑗
𝜓
𝑗

𝛼𝑤
𝐿+1

(R; 𝐽
0
)
. (B.4)

Similarly, we can obtain

Tr [(FR−1/2 (�̂�))
2

]

Tr [F2]
≥
Tr [F2R−1 (�̃�

𝑠
)]

Tr [F2]
− 𝜂

=
∑
𝑗∈𝐽\𝐽
0

𝜓
∗

𝑗
F2𝜓
𝑗
/𝜃
𝑗

Tr [F2]
− 𝜂

≥
1

‖F‖2
2

− 𝜂

(B.5)

for all 𝑗 ∈ 𝐽 \ 𝐽
0
and hence describe a lower bound on the

right-hand side of (B.1) as

min
𝑗∈𝐽\𝐽
0

Tr [(FR−1/2 (�̂�))
2

]

Tr [F2]
≥

1

‖F‖2
2

− 𝜂. (B.6)

Combining (B.4) with (B.6), the support 𝐽
0
can be

identified if R satisfies

𝛼
𝑤

𝐿+1
(R; 𝐽
0
) > 𝜅 (B.7)

for

𝜅 ≥
𝐿‖F‖2
2
∑
𝑗∈𝐽
0

𝜓
∗

𝑗
𝜓
𝑗

1 − 2𝜂‖F‖2
2

. (B.8)
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