26 research outputs found

    Global Earth’s gravity field solution with GRACE orbit and range measurements using modified short arc approach

    Get PDF
    Traditionally, the Earth’s gravity field model is computed from GRACE orbit and range rate measurements, e.g., in a short arc approach where both the position and the velocity vectors are integrated from a force model. In this contribution, we use the GRACE orbit and range measurements to recover the Earth’s gravity field model, thus we only need to integrate the position vectors. We use the range differences between two adjacent epochs to eliminate the range ambiguities. Using GRACE Level-1B RL02 data released by Jet Propulsion laboratory, the gravity field model TJGRACE02O complete to degree and order 90 is developed from 7 years of reduced dynamic orbits covering the period 2004–2010, and the gravity field model TJGRACE02K complete to degree and order 120 is computed from 1 month of kinematic orbits and K-band range data of January. Comparing the degree geoid errors of our new models with recent gravity field models such as the CHAMP-only models EIGEN-CHAMP05S, AIUB-CHAMP03S, ULUX-CHAMP2013S and the GRACE-only models GGM05S, Tongji-GRACE01 as well as a monthly model from the ITG-GRACE2010 time series, and validating these models with GPS-leveling data sets in the USA, we can conclude that the TJGRACE02O model is more accurate than all the CHAMP-only models and TJGRACE02K is comparable in quality to the corresponding GRACE monthly model from ITG-GRACE2010.Department of Land Surveying and Geo-Informatic

    An optimized short-arc approach: methodology and application to develop refined time series of Tongji-Grace2018 GRACE monthly solutions

    Get PDF
    Abstract Considering the unstable inversion of ill-conditioned intermediate matrix required in each integral arc in the short-arc approach presented in Chen et al. (2015), an optimized short-arc method via stabilizing the inversion is proposed. To account for frequency-dependent noise in observations, a noise whitening technique is implemented in the optimized short-arc approach. Our study shows the optimized short-arc method is able to stabilize the inversion and eventually prolong the arc length to 6 hours. In addition, the noise whitening method is able to mitigate the impacts of low-frequency noise in observations. Using the optimized short-arc approach, a refined time series of GRACE monthly models called Tongji-Grace2018 has been developed. The analyses allow us to derive the following conclusions: (a) during the analyses over the river basins (i.e. Amazon, Mississippi, Irrawaddy and Taz) and Greenland, the correlation coefficients of mass changes between Tongji-Grace2018 and others (i.e. CSR RL06, GFZ RL06 and JPL RL06 Mascon) are all over 92 and the corresponding amplitudes are comparable; (b) the signals of Tongji-Grace2018 agree well with those of CSR RL06, GFZ RL06, ITSG-Grace2018 and JPL RL06 Mascon, while Tongji-Grace2018 and ITSG-Grace2018 are less noisy than CSR RL06 and GFZ RL06; (c) clearer global mass change trend and less striping noise over oceans can be observed in Tongji-Grace2018 even only using decorrelation filtering; and (d) for the tests over Sahara, over 36 and 19 of noise reductions are achieved by Tongji-Grace2018 relative to CSR RL06 in the cases of using decorrelation filtering and combined filtering, respectively

    The gap in injury mortality rates between urban and rural residents of Hubei province, China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Injury is a growing public health concern in China. Injury death rates are often higher in rural areas than in urban areas in general. The objective of this study is to compare the injury mortality rates in urban and rural residents in Hubei Province in central China by age, sex and mechanism of injury.</p> <p>Methods</p> <p>Using data from the Disease Surveillance Points (DSP) system maintained by the Hubei Province Centers for Disease Control and Prevention (CDC) from 2006 to 2008, injury deaths were classified according to the International Classification of Disease-10<sup>th </sup>Revision (ICD-10). Crude and age-adjusted annual mortality rates were calculated for rural and urban residents of Hubei Province.</p> <p>Results</p> <p>The crude and age-adjusted injury death rates were significantly higher for rural residents than for urban residents (crude rate ratio 1.9, 95% confidence interval 1.8-2.0; adjusted rate ratio 2.4, 95% confidence interval 2.3-2.4). The age-adjusted injury death rate for males was 81.6/100,000 in rural areas compared with 37.0/100 000 in urban areas; for females, the respective rates were 57.9/100,000 and 22.4/100 000. Death rates for suicide (32.4 per 100 000 vs 3.9 per 100 000), traffic-related injuries (15.8 per 100 000 vs 9.5 per 100 000), drowning (6.9 per 100 000 vs 2.3 per 100 000) and crushing injuries (2.0 per 100 000 vs 0.7 per 100 000) were significantly higher in rural areas. Overall injury death rates were much higher in persons over 65 years, with significantly higher rates in rural residents compared with urban residents for suicide (279.8 per 100 000 vs 10.7 per 100 000), traffic-related injuries, and drownings in this age group. Death rates for falls, poisoning, and suffocation were similar in the two geographic groups.</p> <p>Conclusions</p> <p>Rates of suicide, traffic-related injury deaths and drownings are demonstrably higher in rural compared with urban locations and should be targeted for injury prevention activity. There is a need for injury prevention policies targeted at elderly residents, especially with regard to suicide prevention in rural areas in Central China.</p

    The impact analysis of corrections to GOCE satellite gravity gradient observations by accounting for temporal gravity field variations

    Get PDF
    As an important data source for high-degree static gravity field recovery, the gravity gradient observations from GOCE satellite should be processed prior to gravity field estimation by removing the temporal gravity field variations. In this study, the data processing method to account for the temporal gravity field variations in GOCE gradiometric data is discussed, to better remove the influence of temporal gravity field variations, the standard and background models from ESA are updated. Consequently, high-degree static gravity field models can be directly determined from the self-processed GOCE Level 1b data. To discuss the impacts of temporal gravity field variations on high-degree static gravity field modelling, we design three different data processing schemes to remove the temporal gravity field variations. Our results show that the temporal gravity field variations have an effect on deriving high-degree gravity field models, with a maximum geoid height difference of above 1 cm over some particular regions. Therefore, during deriving high-degree static gravity field solution from GOCE data, we suggest that updating standard and background models are better to mitigate the effect of temporal gravity field variations

    GRACE Data-based High Accuracy Global Static Earth's Gravity Field Model

    No full text
    To recover the highly accurate static earth's gravity field by using GRACE satellite data is one of the hot topics in geodesy. Since linearization errors of dynamic approach quickly increase when extending satellite arc length, we established a modified dynamic approach for processing GRACE orbit and range-rate measurements in this paper, which treated orbit observations of the twin GRACE satellites as approximate values for linearization. Using the GRACE data spanning the period Jan. 2003 to Dec. 2010, containing satellite attitudes, orbits, range-rate, and non-conservative forces, we developed two global static gravity field models. One is the unconstrained solution called Tongji-Dyn01s complete to degree and order 180; the other one is the Tongji-Dyn01k model computed by using Kaula constraint. The comparisons between our models and those latest GRACE-only models (including the AIUB-GRACE03, the GGM05S, the ITSG-Grace2014k and the Tongji-GRACE01) published by different international groups, and the external validations with marine gravity anomalies from DTU13 product and height anomalies from GPS/levelling data, were performed in this study. The results demonstrate that the Tongji-Dyn01s has the same accuracy level with those of the latest GRACE-only models, while the Tongji-Dyn01k model is closer to the EIGEN6C2 than the other GRACE-only models as a whole

    Synthesis, characterization, and catalytic application of titanium-cryptomelane nanorods/fibers

    No full text
    One-dimensional titanium-cryptomelane manganese oxide nanomaterials were successfully synthesized and characterized by TEM, SEM, XRD, XPS, and BET surface area and pore size distribution measurements. Nanosizes of titanium-cryptomelane nanomaterials were effectively controlled by the synthesis routes, and uniform nanorods were obtained by the reflux method and nanofibers by the hydrothermal one. HRTEM, XRD and N-2 adsorption-desorption analyses revealed that the materials exhibited the cryptomelane crystal structure with the pore diameters of about 0.5 nm. XPS studies demonstrated that Ti4+ cations of titanium-cryptomelane materials were located at the octahedral coordinated environments, and that the average oxidation states of manganese species were about 3.9. These materials showed high catalytic activities toward CO oxidation at ambient temperature, and catalytic behaviors showed a correlation with the surface area, the morphology and the titanium content. (c) 2007 Elsevier Inc. All rights reserved

    Tongji-Grace02s and Tongji-Grace02k: high-precision static GRACE-only global Earth's gravity field models derived by refined data processing strategies

    Get PDF
    Abstract In order to derive high-precision static GRACE-only gravity field solutions, the following strategies were implemented in this study: (1) a refined accelerometer calibration model that treats monthly accelerometer scales as a 3-order polynomial and daily accelerometer biases as a 5-order polynomial was developed to calibrate accelerometer measurements; (2) the errors of the acceleration and attitude data were estimated together with the geopotential coefficients and accelerometer parameters on the basis of the weighted least-squares adjustments; (3) a nearly complete observation series of GRACE mission was used to decrease the condition number of normal equation; and (4) the GRACE data collected in lower orbit altitude were also included to decrease the condition number. Our results show that: (1) the refined accelerometer calibration model with much less parameters performs as well as previous methods (i.e. solving daily scales and hourly biases or estimating biases along with bias rates every two hours). However, it provides a system of more stable normal equation and less high-frequency noise in gravity field solutions; (2) high-frequency noise in the gravity field solution is reduced by modelling the errors of the acceleration and attitude data; (3) the geopotential coefficients at all degrees is greatly enhanced by using longer GRACE time series (especially the data by the end of 2010); and (4) due to lower orbit altitude, the GRACE data collected since 2014 lead to a significant improvement of the gravity field solution as the satellites are more sensitive to higher-frequency signal. Using the refined strategies, an unconstrained static solution (named Tongji-Grace02s) up to degree and order 180 was derived. For further suppressing the high-frequency noise, a regularization strategy based on the Kaula rule is applied to the degrees and orders beyond 80, leading to a regularized model Tongji-Grace02k. To validate the quality of the derived models, both Tongji-Grace02s and Tongji-Grace02k were compared to the latest GRACE-only models (i.e. GGM05S, ITU\_GRACE16, ITSG-Grace2014s and ITSG-Grace2014k) and validated using independent data (i.e. GNSS/Levelling data and DTU13 oceanic gravity data). Compared to other models, much less spatial noise in terms of global gravity anomalies with respect to the state-of-the-art model EIGEN6C4 and far higher accuracy at high degrees are achieved by Tongji-Grace02s. The same conclusions can be drawn for Tongji-Grace02k when the same analyses were applied to the regularized solutions ITSG-Grace2014k and Tongji-Grace02k. Validations with independent data confirm that Tongji-Grace02s has the least noise among the unconstrained GRACE-only models and Tongji-Grace02k is the one with the best accuracy among the regularized GRACE-only solutions. For the tests up to degree and order 180 using GNSS/Levelling data, the improvements of Tongji-Grace02s with respect to ITSG-Grace2014s reach 13\% over the Canada and 23\% in the Mexico. Even better, no less than 58\% of improvement is achieved by both Tongji-Grace02s relative to ITSG-Grace2014s and Tongji-Grace02k with respect to ITSG-Grace2014k in the validation based on DTU13 data

    Accumulation conditions and enrichment patterns of natural gas in the Lower Cambrian Longwangmiao Fm reservoirs of the Leshan-Longnǚsi Palaeohigh, Sichuan Basin

    Get PDF
    As several major new gas discoveries have been made recently in the Lower Cambrian Longwangmiao Fm reservoirs in the Leshan-Longnǚsi Palaeohigh of the Sichuan Basin, a super-huge gas reservoir group with multiple gas pay zones vertically and cluster reservoirs laterally is unfolding in the east segment of the palaeohigh. Study shows that the large-scale enrichment and accumulation of natural gas benefits from the good reservoir-forming conditions, including: (1) multiple sets of source rocks vertically, among which, the high-quality Lower Paleozoic source rocks are widespread, and have a hydrocarbon kitchen at the structural high of the Palaeohigh, providing favorable conditions for gas accumulation near the source; (2) three sets of good-quality reservoirs, namely, the porous-vuggy dolomite reservoirs of mound-shoal facies in the 2nd and 4th members of the Sinian Dengying Fm as well as the porous dolomite reservoirs of arene-shoal facies in the Lower Cambrian Longwangmiao Fm, are thick and wide in distribution; (3) structural, lithological and compound traps developed in the setting of large nose-like uplift provide favorable space for hydrocarbon accumulation. It is concluded that the inheritance development of the Palaeohigh and its favorable timing configuration with source rock evolution are critical factors for the extensive enrichment of gas in the Lower Cambrian Longwangmiao Fm reservoirs. The structural high of the Palaeohigh is the favorable area for gas accumulation. The inherited structural, stratigraphic and lithological traps are the favorable sites for gas enrichment. The areas where present structures and ancient structures overlap are the sweet-spots of gas accumulation

    Response of Seedling Growth Characteristics to Seed Size and Cotyledon Damage in <i>Quercus wutaishanica</i>

    No full text
    The successful establishment of seedlings is very important for plant regeneration, but it is vulnerable to many factors at this stage. Cotyledon damage will directly affect the health of seedlings, thus affecting the regeneration of the plant population. However, little is known about the effects of different cotyledon loss degrees of large and small seeds on seedling growth. We investigated the effects of 1/4 (light excision), 1/2 (moderate excision), and complete excision of cotyledons (heavy excision) on the growth characteristics of seedlings germinating from different sizes of seeds. The results showed that (1) shoot height, basal stem diameter, number of leaves, leaf area per plant, specific leaf area, and biomass were significantly higher in large-seeded seedlings than in small-seeded seedlings; (2) slight cotyledon excision had no effect on the biomass of large-seeded seedlings but significantly reduced the biomass of small-seeded seedlings. Our study highlights that large-seeded seedlings are more tolerant than small-seeded seedlings in the early seedling recruitment, suggesting that large-seeded seedlings have a strong fitness for recruitment in young populations of Q. wutaishanica
    corecore