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Abstract Considering the unstable inversion of ill‐conditioned intermediate matrix required in each
integral arc in the short‐arc approach presented in Chen et al. (2015, https://doi.org/10.1002/
2014JB011470), an optimized short‐arc method via stabilizing the inversion is proposed. To account for
frequency‐dependent noise in observations, a noise whitening technique is implemented in the optimized
short‐arc approach. Our study shows that the optimized short‐arc method is able to stabilize the inversion
and eventually prolong the arc length to 6 hr. In addition, the noise whitening method is able to mitigate the
impacts of low‐frequency noise in observations. Using the optimized short‐arc approach, a refined time
series of Gravity Recovery and Climate Experiment (GRACE) monthly models called Tongji‐Grace2018 has
been developed. The analyses allow us to derive the following conclusions: (a) During the analyses over the
river basins (i.e., Amazon, Mississippi, Irrawaddy, and Taz) and Greenland, the correlation coefficients of
mass changes between Tongji‐Grace2018 and others (i.e., CSR RL06, GFZ RL06, and JPL RL06 Mascon) are
all over 92% and the corresponding amplitudes are comparable; (b) the signals of Tongji‐Grace2018 agree
well with those of CSR RL06, GFZ RL06, ITSG‐Grace2018, and JPL RL06 Mascon, while Tongji‐Grace2018
and ITSG‐Grace2018 are less noisy than CSR RL06 and GFZ RL06; (c) clearer global mass change trend and
less striping noise over oceans can be observed in Tongji‐Grace2018 even only using decorrelation filtering;
and (d) for the tests over Sahara, over 36% and 19% of noise reductions are achieved by Tongji‐Grace2018
relative to CSR RL06 in the cases of using decorrelation filtering and combined filtering, respectively.

1. Introduction

The mass redistributions of the Earth system among atmosphere, ocean, ice sheet, hydrology, and solid
Earth inevitably cause time‐related variations in the Earth's gravity field (Kusche et al., 2012; Tapley et al.,
2004; Wahr et al., 2004). The Gravity Recovery and Climate Experiment (GRACE) mission was launched
in March 2002 (Tapley et al., 2004) to measure the variations in the Earth's gravity field at global scale.
Though the GRACE mission ended operation last year due to degradation of the batteries, over 15 years
of measurements collected by the GRACE mission have brought us unprecedented understanding of the
Earth's mass transport processes. Various data processing methods to the GRACE measurements have been
developed, resulting in various time‐variable gravity field models in terms of unconstrained spherical har-
monics (Bettadpur, 2018; Chen et al., 2016; Dahle et al., 2018; Mayer‐Gürr et al., 2018; Meyer et al., 2016;
Yuan, 2018; Guo & Zhao, 2018; Wang et al., 2015), regularized or filtered spherical harmonics (Farahani
et al., 2017; Lemoine et al., 2018), and mascon grids (Luthcke et al., 2013; Save et al., 2016; Watkins et al.,
2015). As the traditional and established representation of gravity field solutions, the spherical harmonic
models are usually applied to most of geophysical signal analyses (Chen et al., 2014; Schumacher et al.,
2018; Velicogna & Wahr, 2013).

Through over 15 years of efforts, numerous research teams have greatly improved the GRACE gravity field
models by developing various refined data processing methods. The improved data processing algorithms
generally focus on refinements of background force models, GRACE Level‐1b data, gravity field recovery
methodologies and noise modeling. Imperfectness of the background force models (especially ocean tide
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and dealiasing models; Daras & Pail, 2017;Zenner et al., 2012) will inevitably cause temporal aliasing, which
is one of the reasons for the north‐south stripes (Loomis et al., 2012; Wiese et al., 2011). The enhanced ocean
tide modeling (Mayer‐Gürr et al., 2012) and nontidal dealiasing strategy (Flechtner & Dobslaw, 2013) were
demonstrated to reduce the impact of temporal aliasing on gravity field estimates to some extent. The
GRACE Level‐1b data processed by the Jet Propulsion Laboratory (JPL) have matured from RL01 to
RL03, where every new version of GRACE Level‐1b data consistently brought clear improvement on gravity
field estimates (Chambers & Bonin, 2012; Dahle et al., 2014; Dahle et al., 2018). During gravity field deter-
mination, the gravity field modeling approaches (e.g., dynamic approach, short‐arc approach and its modi-
fied version, acceleration approach, celestial mechanics approach, and energy balance one) and noise
modeling (random noise and frequency‐dependent noise modeling) are of great importance for improving
the GRACE solutions.

For the well‐known short‐arc approach, it was first established by Schneider (1968) for orbit determination
and then applied by Mayer‐Gürr (2006) to derive several high‐quality gravity field models. Before solving
gravity field parameters, this approach needs to use a priori gravity field models to correct orbits when com-
puting gravitational force acting on satellites. A modified short‐arc approach that simultaneously estimates
the orbit corrections and gravity field parameters was therefore proposed by Chen et al. (2015).
Consequently, the modified short‐arc method becomes insensitive toward the a priori gravity field informa-
tion. Using the proposed method, Chen et al. (2015) developed the Tongji‐GRACE01 monthly solutions that
are comparable to the official GRACE RL05 models. Recently, a further enhancement was implemented for
the modified short‐arc method to model the errors of accelerometer measurement and attitude data (Chen
et al., 2016), leading to clear noise reductions in the derived Tongji‐GRACE02 monthly solutions. However,
there is still some space to further improve the modified short‐arc method. In principle, long‐arc techniques
are more sensitive to long‐term variations in the Earth's gravity field (Cheng et al., 1997) and contributes bet-
ter estimates of tesseral harmonic coefficients (Taff, 1985). Moreover, long arcs probably amplify those minor
forces acting on spacecraft (Xu, 2008), which means that these signals are more likely to be captured.
However, the arc length used in the modified short‐arc approach is generally 2 hr (Chen et al., 2015; Shen
et al., 2015), which is still significantly shorter than those used in either the dynamic approach (1‐day arcs;
Bettadpur, 2012; Dahle et al., 2012; Watkins & Yuan, 2014) or acceleration approach (6‐hr arcs; Ditmar &
van der Sluijs, 2004; Liu et al., 2010). One may discuss whether it is possible to further extend the arc length
in the modified short‐arc approach and what the practical contribution to gravity field quality is. One of the
reasons for limiting the arc length in the modified short‐arc method is that the stability of inversing an
intermediate matrix is decreased along with the increase of arc length. To briefly explain it, we write the
observation equation for both orbits and range rates in the modified short‐arc method as C x + D v = y for
any arc (x and v: parameters and observation corrections; C and D: design matrices for x and v; y is residual

vector). The inversion of the intermediate matrix (DQDT; Q is variance‐covariance matrix of observations)
should be computed in each arc before generating subnormal equation for this arc, whose condition number
will increase rapidly when prolonging the arc length. In other words, stabilizing the inversion would allow to
further extend the arc length. However, until now, nearly no research was conducted on exploring any pos-
sibility to extend the arc length in the modified short‐arc method by stabilizing the inversion.

Noise modeling is also worth noting in gravity field estimation. Especially for K‐band range rate measure-
ments, many studies have shown that such measurements are dominated by frequency‐dependent noise
(Farahani et al., 2013; Mayer‐Gürr et al., 2014). Ditmar et al. (2012) pointed out that the frequency‐
dependent noise in the observations is severely corrupted by the errors in the GRACE orbits. Hence, differ-
ent noise modeling strategies were applied by various research centers. To account for the effects of the
frequency‐dependent noise in the observations on gravity field modeling, empirical parameters are generally
introduced (Liu et al., 2010; Zhao et al., 2011; Zhou et al., 2017). The frequency‐dependent noise can also be
suppressed by frequency‐dependent data weighting (FDDW) techniques (Farahani et al., 2017; Guo et al.,
2018; Klees & Ditmar, 2004). However, most processing centers do not consider the FDDW and less often
discuss the noise behaviors of orbit measurements. One possible reason for that is many approaches do
not use orbits as observations for the estimation of the geopotential coefficients. Even though the contribu-
tion of the orbit measurements to gravity field estimates is limited to the low degrees, the orbits are of impor-
tance for processing the K‐band data. Since any kind of orbits (dynamic, reduced‐dynamic, or kinematic
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orbits) is dominated by the significant frequency‐dependent noise, muchmore work should be carried out to
analyze and model the noise.

To enhance gravity field solutions, this research proposes an optimized short‐arc approach by stabilizing
the inversion of intermediate matrix and modeling the frequency‐dependent noise. Using the optimized
method, a new time series of GRACE monthly solutions called Tongji‐Grace2018 (with maximum degree
and order of both 60 and 96) for the period April 2002 to August 2016 are developed by Tongji University.
The rest of paper is outlined as follows. The theoretical model for the optimized short‐arc approach is pre-
sented in section 2. In section 3, it shows the frequency‐dependent noise modeling and discusses the sta-
bilities of the short‐arc method proposed by Chen et al. (2015) and the optimized one. The detailed data
processing procedures for Tongi‐Grace2018 monthly models are given in section 4. Sections 5 and 6 are
left for discussions on Tongi‐Grace2018 in terms of noise and signal levels. Conclusions are drawn in
section 7.

2. Methodology
2.1. Functional Model for the Optimized Short‐Arc Approach

For an arc with N+1 kinematic orbit measurements r(τk)(k= 0,1,… ,N), the observation equations at bound-
ary epochs are

r τ0ð Þ þ vr τ0ð Þ ¼ r0 þ δr0 (1)

r τNð Þ þ vr τNð Þ ¼ rN þ δrN (2)

where vr(τi) (i= 0,N) is the corrections to positionmeasurements at the boundary epochs; δr0 and δrN denote
the corrections to the boundary position parameters (r0 and rN) to be estimated. For the epochs except for the
two boundary epochs, we have position observation equation below:

r τið Þ þ vr τið Þ ¼ r0 τið Þ þ δr0 τið Þ; i ¼ 1; 2…;N−1: (3)

To generate velocity vector at any epoch, the following equation is subsequently given:

_r τið Þ¼ _r0 τið Þþδ _r0 τið Þ; i ¼ 0; 1…;N : (4)

In equations (3) and (4), vr(τi) is the corrections to the position measurements at normalize time τi; r
0(τi) and

_r0 τið Þ are the reference position and velocity vectors numerically integrated by r(τi) and a priori parameters
(including gravity field coefficients, accelerometer and boundary parameters) and background force models;

and δr0(τi) and δ _r0 τið Þ represent the corrections caused by position measurement errors and insufficient
accuracies in the a priori parameters. Before computing the reference position and velocity vectors, we
define the a priori values u0 and p0 for the gravity field parameters and accelerometer parameters, respec-
tively. Following the discretization technique presented in Chen et al. (2015), the reference position and
velocity vectors can be expressed as a combination of the kinematic orbit measurements in the whole arc
by using integration coefficients αk and βk:

r0 τið Þ ¼ 1−τið Þr0 þ τirN−T2 ∑
N

k¼0
αkK τi; τkð Þa rk;u0;p0ð Þ; (5)

_r0 τið Þ ¼ rN−r0
T

þ T ∑
N

k¼0
βk

∂K τi; τkð Þ
∂τi

a rk;u0;p0ð Þ; (6)

where K is the integral kernel for the arc of length T (Chen et al., 2015; Mayer‐Gürr, 2006) and a is the a
priori force acting on spacecraft. Using the same discretization method, the corrections to the reference posi-
tion and velocity vectors are subsequently given as
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δr0 τið Þ ¼ 1−τið Þδr0 þ τiδrN−

T2∑
N

k¼0
αkK τi; τkð Þ ∂a rk;u0;p0ð Þ

∂u
δuþ ∂a rk;u0;p0ð Þ

∂p
δpþ ∂a rk;u0;p0ð Þ

∂rk
vr τkð Þ

� �
;

(7)

δ _r0 τið Þ ¼ δrN−δr0
T

þ

T∑
N

k¼0
βk
∂K τi; τkð Þ

∂τi
∂a rk;u0;p0ð Þ

∂u
δuþ ∂a rk;u0;p0ð Þ

∂p
δpþ ∂a rk;u0;p0ð Þ

∂rk
vr τkð Þ

� �
:

(8)

Both position and velocity vectors of GRACE A and GRACE B are used to form the following observation
equation for the K‐band range rate measurements:

F rA τið Þ; rB τið Þ;u;pA;pBð Þ ¼ rB τið Þ−rA τið Þð ÞT · _rB τið Þ− _rA τið Þð Þ=ρ τið Þ (9)

in which the symbols A and B indicate GRACE A and GRACE B separately and ρ(τi) is the intersatellite
range. We substitute equations from (1) to (8) into the observation equation (9) and carry out the lineariza-
tion of the observation equation (9), leading to the linearized observation equation for the range
rate measurements:

_ρ τið Þ þ v _ρ τið Þ ¼ F0 þ ∂F
∂u

δuþ ∂F
∂rA0

δrA0 þ ∂F
∂rAN

δrAN þ ∂F
∂rB0

δrB0 þ
∂F
∂rBN

δrBN þ ∂F
∂pA

δpA þ ∂F
∂pB

δpB

þ ∑
N

k¼0

∂F
∂rAk

vrA τkð Þ þ ∂F
∂rBk

vrB τkð Þ
� �

(10)

in which the reference range rate F0 is directly computed from the reference position and velocity
vectors; δps and vrs s ¼ A;Bð Þ are the corrections to the accelerometer parameters for both satellites and orbit
measurements of both satellites, respectively; v _ρ stands for the corrections to the intersatellite range rate
measurements _ρ τið Þ ; and δrsk k ¼ 0;N ; s ¼ A;Bð Þ represents the corrections to the boundary parameters
for both satellites.

2.2. Separating Orbits From Range Rate in Constructing Normal Equation

For brevity, the observation equations (1) and (3) for the orbits of both satellites at the jth arc (j = 1,2, … ,K)
can be rewritten in the form of matrices:

CA
j xj þDA

j v
A
j ¼ yAj ; (11)

CB
j xj þ DB

j v
B
j ¼ yBj ; (12)

whereCs
j andD

s
j (s = A,B) stand for partial derivative matrices with respect to the parameters to be estimated

xj¼ δμT ; δpT
Aj; δp

T
Bj; δr

A
0jT; δr

A
NjTδr

B
0jT; δr

B
NjT

� �T
and orbit correction vector vsj s ¼ A;Bð Þ , respectively, as

given in the observation equations from (1) to (3); the residual vector ysj (s = A,B) is formed by subtracting
the kinematic orbit measurements from the reference orbit positions. Analogously, the simplified form of
the observation equation (10) for the intersatellite range rates is given as follows:

C _ρ
j xjþD

_ρA
j vAj þD

_ρB
j vBj −v

_ρ
j¼y _ρ

j (13)

in whichC _ρ
j andD

_ρs
j (s=A,B) are the partial derivative matrices with respect to the unknown parameters and

orbit corrections separately; y _ρ
j indicates residual vector for range rate measurements. Before further con-

ducting derivation for the above observation equations, we assume there are N+1 kinematic orbit measure-
ments and L intersatellite observations at the jth arc. Unlike the modified short‐arc approach that does not
treat boundary vectors as parameters, we can deriveN+1 orbit observation equations for either GRACE A or
GRACE B because boundary parameters are introduced when forming observation equations. This means

that DA
j and DB

j for both satellites become square matrices with full rank, so they are invertible. We
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therefore multiply equations (11) and (12) by DA
j

� �−1
and DB

j

� �−1
separately, leading to more concise obser-

vation equations for both orbits as follows:

vAj ¼ − DA
j

� �−1
CA
j

� �
xj− − DA

j

� �−1
yAj

� �
(14)

vBj ¼ − DB
j

� �−1
CB
j

� �
xj− − DB

j

� �−1
yBj

� �
(15)

Here we define

C
A
j ¼ − DA

j

� �−1
CA
j

� �
; yAj ¼ − DA

j

� �−1
yAj

� �
(16)

C
B
j ¼ − DB

j

� �−1
CB
j

� �
; yBj ¼ − DB

j

� �−1
yBj

� �
(17)

C
_ρ
j¼C _ρ

j þD
_ρA
j C

A
j þD

_ρB
j C

B
j ; y

_ρ
j¼y _ρ

jþD
_ρA
j yAj þD

_ρB
j yBj : (18)

Based on the definitions (16) and (17), the orbit observation equations for GRACE A and GRACE B can be
further simplified as

vA
j ¼ C

A
j xj−y

A
j (19)

vBj ¼ C
B
j xj−y

B
j (20)

Taking equations from (18) to (20) and (13) into account, we derive a more concise observation equation for
the range rate measurements as follows:

v _ρ
j ¼ C

_ρ
j xj−y

_ρ
j : (21)

Finally, the subnormal equation at the jth arc can be formed as

∑
s¼A;B; _ρ

C
s
j

� �T
Qs

j

� �−1
C

s
j

� �
xj ¼ ∑

s¼A;B; _ρ
C

s
j

� �T
Qs

j

� �−1
ysj ; (22)

where Qs
j s ¼ A;B; _ρð Þ denotes the variance‐covariance matrices for orbits and intersatellite range rates. As

shown in equation (22), the contribution of each observable (orbit of each satellite or intersatellite range
rate) to generating normal equation is easy to be assessed. According to equation (22), we generate the sub-
normal equation for each arc. In this study, the boundary parameters are estimated per arc and acceler-
ometer parameters (scales and biases) are solved per day. The boundary parameters can be first
eliminated after generating the subnormal equation for each arc. Once generating the daily normal equa-
tion, the accelerometer parameters will also be eliminated immediately. The combination of all the reduced
daily normal equations leads to the final monthly normal equation only regarding the geopotential coeffi-
cients to be estimated.

2.3. Theoretical Merits of the Optimized Short‐Arc Method

Before discussing the metrics of the optimized short‐arc approach, we need to review the basic formulas for
the previous modified short‐arc approach (Chen et al., 2015) and explain the corresponding drawback. One
of the major distinctions between the functional models of the optimized short‐arc approach and the mod-
ified one is the parameterization of the boundary epochs. In the modified short‐arc approach, the boundary
values are directly expressed as kinematic orbit measurements at the boundary epochs plus corrections;
thereby, no boundary parameter is introduced. In such a case, the observation equations (1) and (2) are
not applicable anymore, indicating that the design matrix Ds

j (s = A,B) for kinematic orbit corrections at
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the jth arc becomes am‐by‐n irreversible matrix (m = 3 × (N − 1),n = 3 × (N+1)). Consequently, as given in
Chen et al. (2015), the observation equations for the pair of orbits and range rates at the jth arc along with the
corresponding subnormal equation can be summarized as follows:

Cjxj þDjvj ¼ yj (23)

CT
j DjQjD

T
j

� �−1
Cj

� �
xj ¼ CT

j DjQjD
T
j

� �−1
yj; j ¼ 1; 2;…;K (24)

where

Cj ¼
CA
j

CB
j

C _ρ
j

0
BB@

1
CCA;Dj ¼

DA
j 0 0

0 DB
j 0

D _ρ
j A

D _ρ
j B−I

0
BB@

1
CCA;

yj ¼
yAj

yBj

y _ρ
j

0
BB@

1
CCA;Qj ¼

QA
j 0 0

0 QB
j 0

0 0 Q _ρ
j

0
BB@

1
CCA:

Unfortunately, Dj is such an irreversible matrix that we cannot separate equation (23) for each GRACE
observable (orbit of each satellite or intersatellite range rate) in the form of equations (19) to (21). In the

modified short‐arc approach, the large‐scale intermediate matrix DjQjD
T
j

� �
with dimension generally

between 6 and 7 times the arc length should be inversed prior to creating the normal equation, which means
that extending arc length will rapidly increase the dimension of this matrix. From the perspective of numer-

ical computation, the large‐scale matrix in general makes it more difficult to obtain a stable inversion

DjQjD
T
j

� �−1
, which is the main reason for preventing the extension of the arc length in the modified

short‐arc method. On the other hand, in the case of the optimized short‐arc approach, we only need to indi-
vidually compute the inversion of matrixDs

j s ¼ A;Bð Þ for each satellite before creating the normal equations,

whose dimensions are only triple of the arc length, making it possible to prolong the arc length. Further dis-
cussions about the difference of stability between the modified and optimized short‐arc methods will be
given in section 3.3.

3. Discussions on the Optimized Short‐Arc Method
3.1. Constructing Variance‐Covariance Matrices

As stated before, the intersatellite range rate measurements are contaminated by the frequency‐dependent
noise, and many methodologies have been applied to account for them. One of the methodologies is to con-
struct variance‐covariance matrices for the observations. Based on autocovariance or cross‐covariance of
postfit residuals, different variance‐covariance matrices for observations were established under various
assumptions (Koch et al., 2010). In this study, a noise whitening technique is applied to construct the
variance‐covariance matrices for measurements, which is similar to FDDW technique (Farahani et al.,
2017) in spite of the difference of detailed implementation between these two techniques. It is necessary
to investigate the behavior of the postfit residuals of GRACE measurements before our variance‐covariance
matrices are created. As an example, we select November 2014 to show the postfit residuals of GRACE mea-
surements derived by using the data processing presented in Chen et al. (2015). Note that the corresponding
monthly gravity field model up to degree and order 60 was determined before calculating the residuals.
During gravity field modeling, the GRACE measurements (range rates, nongravitational accelerations,
and attitudes) from JPL and kinematic orbits computed by Graz University of Technology were used.

As presented in Figure 1, the postfit residuals of orbit and range rate measurements on 15 November 2014
show clear frequency dependency, as illustrated by the power spectrum densities (PSDs) plotted in
Figure 2. From Figure 2, it can be seen that both orbit and range rate measurements (especially the orbit
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data) are dominated by the low‐frequency noise. For the case of range rates, the frequency‐dependent noise
is usually accounted for via either estimating periodic parameters or introducing variance‐covariance
matrices. As stated in the introduction, the frequency‐dependent noise in the observations is greatly
attributed to the errors in GRACE orbits (Ditmar et al., 2012). Due to the imperfect background models
used to account for tidal and nontidal variations in both ocean and atmosphere during gravity field
modeling (Kurtenbach et al., 2009; Seo et al., 2008), temporal aliasing errors will inevitably propagate to
the orbit and K‐band observations. This is one of the possible reasons for the frequency‐dependent
amplitude of the orbit residuals as displayed in Figure 1a, indicating modeling frequency‐dependent noise
for orbits is theoretically necessary. In this paper, the variance‐covariance matrices for orbit and range
rate data are constructed rather than doing so only in the range rates (Guo et al., 2018).

Before constructing the variance‐covariance matrix Qs
j s ¼ A;B; _ρð Þ in the jth arc, we define the frequency‐

dependent noise for the orbit and intersatellite range rate measurements as esj s ¼ A;B; _ρð Þ: Applying noise

whitening operation, the frequency‐dependent noise will become Gaussian white noise esj s ¼ A;B; _ρð Þ:

Figure 1. Postfit residuals of orbit (a) and range rate (b) measurements on 15 November 2014.

Figure 2. Power spectrum densities for orbit (a) and range rate (b) residuals.
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esj ¼ Hs
je

s
j (25)

where the noise whitening matrix Hs
j s ¼ A;B; _ρð Þ and the variance of

white noise σs
j s ¼ A;B; _ρð Þ can be obtained based on the autoregressive

(AR) noise model implemented in the ARMASA toolbox (Broersen, 2000;
e.g., ARMASA toolbox offered in the MATLAB Central, https://nl.math-
works.com/matlabcentral/fileexchange/1330‐armasa). In ARMASA, the
AR noise model can be determined by using the Levinson‐Durbin algo-
rithm (Broersen & Wensink, 1998). Based on σs

j s ¼ A;B; _ρð Þ and the pre-

defined variance of unit weight σ0 (it is 2 cm in this study since this value
is close to the root‐mean‐square (RMS) of the postfit residuals of kine-

matic orbits), the variance‐covariance matrixQ
s
j s ¼ A;B; _ρð Þ for white noise is constructed in the following:

Q
s
j ¼ diag σsjð Þ2.

σ0ð Þ2

� �
(26)

According to the law of variance‐covariance propagation, we build the relationship between the variance‐

covariance matrices Q
s
j s ¼ A;B; _ρð Þ and Qs

j s ¼ A;B; _ρð Þ as follows:

Q
s
j ¼ Hs

jQ
s
j Hs

j

� �T
(27)

Because the whitening matrixHs
j s ¼ A;B; _ρð Þ is invertible, the variance‐covariance matrixQs

j s ¼ A;B; _ρð Þ for
the frequency‐dependent noise is easily obtained through applying the inversion of Hs

j to both sides of

equation (27):

Qs
j ¼ Hs

j

� �−1
Q

s
j Hs

j

� �−1
� �T

(28)

As the frequency‐dependent noise esj s ¼ A;B; _ρð Þ for measurements is practically unknown, the variance‐

covariance matrices Qs
j s ¼ A;B; _ρð Þ for measurements are usually computed on the basis of the postfit resi-

duals of measurements.

3.2. Added Value of Optimized Short‐Arc Method

As discussed in section 2.3, the optimized short‐arc method is theoreti-
cally expected to improve the gravity field estimates compared to the mod-
ified short‐arc approach. In order to discuss any possible practical merit of
the optimized short‐arc method in gravity field modeling, we compare
four monthly gravity field models (indicated by cases 1 to 4) up to degree
and order 60 derived from the GRACE observations over the month
November 2014 via the modified and optimized short‐arc approaches in
the cases with and without modeling frequency‐dependent noise. As
given in Table 1, the variance‐covariance matrices are diagonal matrices
for cases 1 and 2 since the noise contained in the GRACE measurements
are simply treated as white noise in the two cases, while they become full
matrices when the frequency‐dependent noise is modeled in accordance
with section 3.1. During computing the four models, the arc length is cho-
sen to be 2 hr since Chen et al. (2015) found that such an arc length can
achieve the optimum gravity field model for the modified short‐
arc approach.

As expected, the derived gravity field solutions in terms of geoid degree
variances relative to EIGEN6C4 (Förste et al., 2014) shown in Figure 3
demonstrate the clear improvements on gravity field determination

Table 1
Computational Schemes

Gravity filed
solution Method Variance‐covariance matrix

Case 1: Md modified short‐arc diagonal
Case 2: Od optimized short‐arc diagonal
Case 3: Mf modified short‐arc full
Case 4: Of optimized short‐arc full

Note. M = modified; O = optimized; d = diagonal matrices; f = full
matrices.

Figure 3. Gravity field solutions in terms of geoid degree variances w.r.t
EIGEN6C4 determined by using the modified and optimized short‐arc
approaches (with and without modeling frequency‐dependent noise).
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contributed by the optimized short‐arcmethod. It can be concluded from Figure 3 that (1) nomatter whether
frequency‐dependent noise is modeled or not, the optimized short‐arc approach consistently reduces gravity
field errors at high degrees significantly in comparison to the modified one and (2) the frequency‐dependent
noise modeling technique presented in this paper leads to prominent noise reductions for both modified and
optimized short‐arc methods. In mathematic sense, the optimized short‐arc method is equivalent to the
modified one. However, as elaborated in section 2.3, the optimized method is expected contribute a
better‐conditioned intermediate matrix in each arc, which is the reason for the improvements in cases 2
and 4. Detailed discussions on the difference of the property of the intermediate matrices between the two
methods are going to be performed in section 3.3. In Figure 3, we also observe some differences at the low
degrees ranging 2 to 3 between case 4 and others; nevertheless, such differences are less than 0.30 mm in
terms of geoid degree variances. We further present the PSDs of the postfit residuals of observations (i.e.,
orbits and range rates) for the four cases in Figure 4 to check any possible enhancement caused by the
optimized short‐arc method in the observation domain. Overall, as indicated in Figure 4, the optimized
short‐arc method has stronger ability to reduce the low‐frequency noise than the modified short‐arc
approach when comparing either case 1 to 2 or case 3 to 4. Particularly for the range rates, much more
low‐frequency noise is mitigated by the frequency‐dependent noise modeling method, demonstrating the
benefits of the proposed noise modeling.

In this study, the concurrent modeling of frequency‐dependent noise for both orbit and range rate observa-
tions is one of the contributions. In order to separate the impact of frequency‐dependent noise modeling on
gravity field recovery from orbits to range rates, this study further calculates four GRACE solutions up to
degree and order 60 for the month November 2014 based on the strategies outlined in Table 2. The resulting
gravity field solutions are illustrated in Figure 5 in terms of geoid degree variances relative to EIGEN6C4.
One can see from Figure 5 that constructing variance‐covariance matrices for either orbits or range rates,

there is no doubt, improves the accuracies of geopotential coefficients at
high degrees. Even better, simultaneously modeling the frequency‐
dependent noise for orbits and range rates further reduces the noise at
high degrees. This finding supports that it is beneficial to consider the
frequency‐dependent noise in the orbit measurements during gravity field
modeling in addition to that in the range rate data. Even though the coef-
ficients of the four models at low degrees are generally dominated by geo-
physical signals, some slight discrepancies occur at degrees 2 and 3. In the
comparison among the four models in terms of geoid degree variance, the
maximum difference for degrees 2 and 3 is about 0.70 and 0.28 mm,
respectively. Such discrepancies are probably caused by the differences
among the constructed variance‐covariance matrices. Therefore, an in‐

Figure 4. Power spectrum densities of postfit residuals of orbits (a) and range rate (b) measurements.

Table 2
Computational Schemes Based on Optimized Short‐Arc Method

Gravity filed
solution

Variance‐covariance matrix

Orbits Range rates

Case A: Od & Rd Diagonal diagonal
Case B: Of & Rd Full diagonal
Case C: Od & Rf Diagonal full
Case D: Of & Rf Full full

Note. O = orbits; R = range rates; d = diagonal matrices; f = full matrices.
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depth discussion on the impacts of different variance‐covariance matrices
on gravity field modeling deserves a separate investigation. Furthermore,
we also plot the PSDs of the postfit residuals of orbits and range rates for
cases A to D in Figure 6. It reveals that introducing variance‐covariance
matrices for any type of observables (orbit or range rate) achieves noise
reductions for orbits and range rates at low frequencies, particularly for
the range rates. Despite the relatively larger improvement contributed
by modeling frequency‐dependent noise in the range rate measurements,
the decreased noise at low frequencies as shown in Figure 6a suggests that
constructing variance‐covariance matrix for orbits is beneficial as well.

3.3. Inversion Stability of the Modified and Optimized Short‐Arc
Methods

As stated in the introduction, one of the aims in this study is to answer
whether we are able to prolong the arc length for the short‐arc approach
and what benefit this can achieve. The arc length used in the modified
short‐arc method is generally 2 hr (Chen et al., 2015). As discussed in
section 2.3, further prolonging the arc length for the modified short‐arc
method is a challenge due to the unstable inversion of the large‐scale

intermediate matrix DjQjD
T
j , whose dimension is almost 7 times the arc length. In principle, the proposed

optimized short‐arc is able to extend the arc length since only two reduced‐dimension matrices (namely,DA
j

andDB
j ) are required to be inversed in forming the normal equation for estimating geopotential coefficients.

To confirm the above this, we choose various arc lengths (2, 4, 6, 8, and 12 hr) and compute the correspond-
ing condition numbers of Ds

j s ¼ A;Bð Þ based on the optimized short‐arc approach. The same arcs are

applied to the modified short‐arc method and the condition numbers of DjQjD
T
j are calculated as well.

However, the case of 12 hr is unavailable for the modified short‐arc method, since such a long arc length

makes the dimension of the immediate matrixDjQjD
T
j over 60,000, which requires almost 30 GB of compu-

tational memory. Considering the memory consumption of other matrices (e.g., the design matrices for gen-
erating normal equation and computing postfit residuals), the memory consumption in total is over 100 GB,
which greatly exceeds the maximum memory (32 GB) of our computers. As shown in Table 3, the resulting
condition number based on the modified short‐arc method significantly increases with arc length, while it
changes slightly when prolonging the arc length in the case of the optimized short‐arc method. Even in

the case of 2‐hr arcs, the matrix DjQjD
T
j generated via the modified short‐arc method is still relatively ill

Figure 5. Gravity field solutions in terms of geoid degree variances w.r.t
EIGEN6C4 determined by using the modified and optimized short‐arc
approaches with and without modeling frequency‐dependent noise.

Figure 6. Power spectrum densities (PSDs) of postfit residuals of orbits (a) and range rate (b) measurements.
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conditioned, with the condition number of 15.3 (in unit of log10), which is
remarkably larger than that generated by the optimized short‐arc method.

In mathematic sense, the intermediate matrixDjQjD
T
j applied to generate

normal equation for estimating gravity field parameters in the modified
short‐arc approach is severely ill conditioned so that the property of the
final normal matrix for solving gravity field parameters will be affected
and eventually the gravity field estimates may be degraded. On the con-
trary, the condition number of the reduced‐dimension intermediate
matrix Ds

j s ¼ A;Bð Þ is significantly better, which will lead to more stable

gravity field estimates. To verify it, the modified and optimized short‐arc
methods are separately applied to derive normal equations for estimating
geopotential coefficients up to degree and order 60 from the GRACE data

in November 2014, with different arc lengths listed in Table 3. The full variance‐covariancematrices are built
during deriving the above normal equations in accordance with section 3.1. As depicted in Table 4, the con-
dition number of the final normal equation in terms of log10 for the modified short‐arc method increases
with the arc length. This agrees to what we discussed in section 2.3. In the case of the optimized one, the con-
dition number shows an apparent decline when prolonging the arc length from 2 to 6 hr; however, it grows
up when further prolonging the arc length from 6 to 12 hr. One possible reason for limiting the arc length, as
shown in Table 3, is that the property of the immediate matrixDs

j s ¼ A;Bð Þ degrades when the arc length is

over 6 hr. Especially in the case of 12‐hr arc length,Ds
j s ¼ A;Bð Þ becomes severely ill conditioned (with con-

dition number of 9.9 in terms of log10). Nevertheless, the normal equation based on the optimized short‐arc
method has a smaller condition number than that based on the modified one when using the same arc
length.

The more stable normal equations obtained by the optimized short‐arc method are theoretically anticipated
to improve gravity field estimation. To compare the difference of the practical contributions to gravity field
estimation between the modified and optimized short‐arc methods, we subsequently present the geoid
degree variances of the corresponding gravity field models based on the above normal equations in
Figure 7. One can see from Figure 7a that longer arcs (more than 2 hr) for the modified short‐arc approach
result in dramatic increase of noise in gravity field estimates as the normal equations become more ill con-
ditioned. Conversely, as long as the arc length is no more than 6 hr, increasing arc length can lead to notice-
able noise reduction in the obtained gravity field models for the case of the optimized short‐arc method,
which also agrees well with what we conclude from Table 4. However, for the case of the optimized short‐
arc approach, there is a slight noise growth in the estimated gravity field at high degrees when further
prolonging the arc length from 6 to 12 hr. Overall, the most appropriate arc length is 2 hr for the modified
short‐arc method, while it is 6 hr for the optimized short‐arc approach. Though 2‐hr arcs are the optimal
choice for the modified short‐arc method, as demonstrated in Figure 8, the corresponding gravity field solu-
tion still manifests significant noise at high degrees compared to that determined by using the optimized
short‐arc method based on 6‐hr arcs.

4. Development of Tongji‐Grace2018 Monthly Solutions

The above analyses demonstrate the merits of the optimized short‐arc
approach in gravity field estimation. In view of such contributions of the
proposed methodologies, we develop a new time series of GRACE
monthly gravity field solutions (named Tongji‐Grace2018) for the period
April 2002 to August 2016 through using the optimized short‐arc
approach. Like the official RL06 models (i.e., CSR RL06, GFZ RL06, and
JPL RL06), Tongji‐Grace2018 is provided in two different maximum reso-
lutions (d/o 96 and 60). This section is dedicated to elaborating the
dynamic process models and observations collected by GRACE satellites
as well as the detailed parameter estimation process for generating
Tongji‐Grace2018 models.

Table 4
Condition Numbers (log10) of Normal Matrices Based on Various Arcs
(Asterisk Indicates Unavailable Test)

Arc
length (hr)

Modified
short‐arc method

Optimized
short‐arc method

2 6.24 6.12
4 6.43 5.90
6 6.57 4.82
8 6.76 5.84
12 * 5.90

Table 3
Condition Numbers of Intermediate Matrices Based on Various Arcs
(Asterisk Indicates Unavailable Test)

Arc
length (hr)

Modified short‐arc
method (log10)

Optimized short‐arc
method (log10)

DjQjD
T
j Ds

j s ¼ A;Bð Þ
2 15.3 3.3
4 15.8 4.2
6 16.4 4.8
8 16.8 5.5
12 * 9.9
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4.1. Models for Dynamic Process

Table 5 lists the dynamic models, including static Earth's gravity field, solid Earth (pole) tides, ocean (pole)
tides, atmospheric and oceanic dealiasing effects, third‐body perturbations, and relativistic impacts in con-
junction with nongravitational forces. As we concentrate on the time‐variable Earth's gravity field directly
associated with the variations in atmosphere, ocean, ice sheet, hydrology, and solid Earth (Tapley et al.,
2004), the dynamic forces should be accurately removed during gravity field modeling.

Since the GRACE monthly models are generally defined by a specific degree and order (e.g., 60, 96, or 120),
high‐degree signals are usually dealiased by static Earth's gravity field model. During deriving Tongji‐
Grace2018 models, the high‐precision static GRACE‐only Tongji‐Grace02s complete to degree and order
180 is selected to account for the gravity field signals at high degrees. Like Chen et al. (2015), the impacts
of the solid Earth (pole) tides in terms of geopotential coefficients for the degrees ranging 2 to 4 are modeled
in accordance with the IERS 2010 conventions (Petit & Luzum, 2010). Unlike Chen et al. (2015) that only

used 18 tides in EOT11a ocean model (Savcenko & Bosch, 2012), this
paper considers two more ocean tide constituents (namely, Mtm and
Msqm) from Fes2004 (Lyard et al., 2006) in addition to the 18 tides in
EOT11a to remove the impacts of the ocean tides. As stated in Petit and
Luzum (2010), the secondary ocean tides may represent almost 20% of
impacts on satellite orbit integration based on one day arcs, thus an admit-
tance method proposed by Rieser et al. (2012) is used to linearly interpo-
late 236 secondary ocean tides. For the purpose of computing the
corrections due to the ocean pole tides, Desai model (Desai, 2002) up to
degree and order 100 is adopted. For the removal of the short‐period non-
tidal variability over the atmosphere and ocean, the AOD1B RL06 up to
degree and order 180 is employed (Dobslaw et al., 2017). As for the relati-
vistic effects, we calculate the corresponding correction in terms of accel-
eration based on the IERS 2010 conventions. For computing the third‐
body perturbations caused by the Sun, the Moon, and other planets
(e.g., Jupiter), the version of planetary ephemerides offered by JPL,
namely, DE430 (Folkner et al., 2008), is used to determine the precise
position and velocity vectors for planets at any required epoch.
Regarding calculation of the nongravitational forces acting on satellites,
the onboard accelerometer data are employed.

Figure 7. Gravity field solutions in terms of geoid degree variances w.r.t EIGEN6C4 determined by using the modified (a) and optimized (b) short‐arc approaches
on the basis of various arc lengths.

Figure 8. Gravity field solutions in terms of geoid degree variances w.r.t
EIGEN6C4 determined by using the modified (2‐hr arcs) and optimized
(6‐hr arcs) short‐arc approaches.
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4.2. Satellite Observations

The creation of normal equation (22) for estimating gravity field parameters is based on GRACE observa-
tions containing orbits and accelerations as well as attitudes of both satellites together with intersatellite
range rates, which are the primary observation type of GRACE Level‐1b data published by JPL. As stated
in the introduction, every release of GRACE Level‐1b data can lead to apparent improvements on gravity
field estimation, which is one of the reasons for JPL to recently reprocess the GRACE Level‐1b data by
using refined data processing algorithms, leading to an improved version of Level‐1b data called
GRACE RL03. This paper therefore uses the accelerations and attitudes of the twin satellites and the
intersatellite range rates from GRACE RL03 as well as kinematic orbits from Graz University of
Technology (Zehentner & Mayer‐Gürr, 2013). The basic information on the employed measurements is
given in Table 6.

4.3. Parameter Estimation

Based on the dynamic models given in Table 5 and the measurements outlined in Table 6, the subnormal
equation (22) regarding the unknown vector xj for each arc can be computed. The vector xj to be esti-
mated includes global (gravity field coefficients) and local (boundary positions and accelerometer scales
and biases) parameters as elaborated in section 2.2. Because Meyer et al. (2016) showed that calibrating
accelerometer data via daily scales can considerably mitigate the impacts of the solar activity on the
derived gravity field models, we estimate daily accelerometer scales in three axes for both satellites
throughout this study. To model any possible time‐related variation in daily accelerometer biases, the
accelerometer bias in each axis of the accelerometer is treated as a 5‐order polynomial for each day in
accordance with Chen et al. (2018). Although the local parameters (boundary parameters and acceler-
ometer parameters) are simultaneously estimated with the geopotential coefficients, it is worth noting
that the boundary parameters are eliminated from the subnormal equation for each arc and the acceler-
ometer parameters are eliminated for each day. All the reduced daily normal equations are subsequently
accumulated to form the monthly normal equation for solving the geopotential coefficients up to degree
and order 96 (or 60). Even though all the local parameters are eliminated from the final normal equation,
the corresponding gravity field result is mathematically equivalent to the case of retaining the local para-
meters in the final normal equation.

Chen et al. (2018) showed that accurately modeling the time‐related var-
iations in accelerometer parameters can lead to improvements on gravity
field models. Here we present the statistics (mean values and standard
deviations) of the estimated accelerometer scales and biases for the period
April 2002 to August 2016 in Figure 9. It can be clearly observed in
Figure 9 that both scales and biases experience apparent temporal varia-
tions, particularly in X and Z directions, indicating that the time‐related
variations in the accelerometer parameters should be accounted for dur-
ing gravity field modeling.

Table 5
Dynamic Models

Force model Description

Static Earth's gravity field Tongji‐Grace02s with a maximum degree and order of 180
Solid Earth tides IERS 2010 conventions (Petit & Luzum, 2010)
Solid Earth pole tides IERS mean pole
Ocean tides EOT11a (Savcenko & Bosch, 2012) & Fes2004

(Mtm & Msqm; Lyard et al., 2006) up to d/or 100
Ocean pole tides Desai model (Desai, 2002) up to d/o 100
Atmospheric and oceanic dealiasing AOD1B RL06 dealiasing products (Dobslaw et al., 2017) up to d/o 180
Third body The Sun, the Moon, and Jupiter (JPL DE430 planetary ephemerides;

Folkner et al., 2008)
Relativistic impacts IERS 2010 conventions
Nongravitational forces Onboard accelerometer data

Table 6
Measurement Information

Observable Description

Orbit Kinematic orbits from Graz University
of Technology; sampling rate of 10 s

Range rate Sampling rate of 5 s
Attitude Sampling rate of 5 s
Acceleration Sampling rate of 1 s; resampled into 5 s
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5. Noise Analyses of Monthly Gravity Field Solutions

Since any gravity fieldmodel depends on specific observations, dynamic process models, andmethodologies,
either inaccuracies in the observations (or dynamic process models) or imperfectness in the methodologies
will corrupt the derived gravity field model. Even though most of the GRACEmonthly solutions available at
International Centre for Global Earth Models (ICGEM) generally have comparable signal amplitudes, their
noise levels are different. For gravity field modeling, the better methodology is able to considerably suppress
the noise in addition to retaining the gravity field signals. As discussed in the preceding sections, the opti-
mized short‐arc method can reduce the gravity field noise at high degrees in comparison with the modified
one. To comprehensively assess the quality of the Tongji‐Grace2018models derived on the basis of such opti-
mized methodologies, the signal amplitude and noise level of the models are going to be discussed in terms
of spectra, time, and space domains since each gravity fieldmodel simultaneously contains signals and noise.

5.1. Spectra Domain

To conduct analyses in the spectra domain for various GRACE models, the geoid degree variances with
respect to the state‐of‐the‐art static model EIGEN6C4 are computed. We compare Tongji‐Grace2018 to
CSR RL06, GFZ RL06, ITSG‐Grace2018 (Mayer‐Gürr et al., 2018), IGG RL01 (available at ICGEM), and
HUST‐Grace2016 (Zhou et al., 2017) for the months May 2003 and April 2011 in terms of geoid degree var-
iances. Note that both IGG RL01 and HUST‐Grace2016 are based on RL05 processing standards, but the
others are all based on RL06 processing standards. It is well known that the GRACE‐based geopotential coef-
ficients at low degrees (particularly below degree 30) are generally dominated by gravity field signals, while
the high‐degree coefficients are contaminated by noise (Chen et al., 2018;Meyer et al., 2016). As presented in
Figure 10, the signal levels (approximately below degree 30) of Tongji‐Grace2018 for both months are in
good agreement with those models on the basis of the RL06 processing standards. Compared to IGG
RL01, HUST‐Grace2016 and GFZ RL06, much more noise at degrees over 30 is reduced by Tongji‐
Grace2018 models. Even compared to CSR RL06, Tongji‐Grace2018 still achieves clear noise reductions at
degrees over 60, suggesting that our gravity field coefficients are accurate up to a higher degree. However,
ITSG‐Grace2018 has the best performance at high degrees, which is believed to be contributed by the rigor-
ous variance‐covariance matrices of observations constructed by incorporating the uncertainties of back-
ground force models (ocean model together with atmospheric and oceanic dealiasing product; Mayer‐

Figure 9. (a) Monthly mean accelerometer scales in X, Y, and Z axes. (b) Standard deviations of scales (in unit of meters per square second). (c) Monthly mean
biases. (d) Standard deviations of biases (in unit of meters per square second).
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Gürr et al., 2018). So far no data processing center except for Mayer‐Gürr et al. (2018) has considered such
uncertainties. One of the reasons for that is the tremendous computational burden caused by taking the
background force models uncertainties into account.

The comparisons in terms of geoid degree variances only reflect the mean signal or noise per degree. To
further compare the coefficients at all the degrees and orders among different GRACE models, we subse-
quently plot the discrepancies of geopotential coefficients between six GRACE models and EIGEN6C4 in
Figure 11. In this case, the discrepancies at higher degrees and orders still are greatly contaminated by noise
since the GRACE observations collected over one month are insensitive to high‐degree signals. As shown in
Figure 11, the zonal and near‐zonal coefficients of both Tongji‐Grace2018 and ITSG‐Grace2018 in the case
after degree 60 are better determined than those of other models. Especially compared to HUST‐
Grace2016 and IGG RL01, Tongji‐Grace2018 and ITSG‐Grace2018 show the significantly improved accura-
cies at high degrees.

Figure 10. Geoid degree variances of various gravity field solutions.w.r.t EIGEN6C4.

Figure 11. Geopotential coefficients differences (log10 scale) between six gravity field solutions and EIGEN6C4.
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5.2. Spatial Noise

The improved accuracy in Tongji‐Grace2018 is theoretically expected to enhance the estimates of global
mass transports. Before themass transports are computed, degree‐1 coefficients are replaced with those from
Swenson et al. (2008). For the C20 coefficients, the SLR values determined by Cheng and Tapley (2004) are
used instead of the GRACE‐based ones. In this section, CSR RL06, GFZ RL06, and ITSG‐Grace2018 are all
complete to degree and order 96 and used for comparison. In an attempt to confirm possible improvement of
Tongji‐Grace2018 on the estimates of global mass transports, we estimate dominant signal terms (bias,
trend, acceleration, annual, semiannual, and S2 alias components) after applying a P4M6 decorrelation filter-
ing (Chen et al., 2009). The reason to apply the decorrelation filtering is that the GRACEmodels up to degree
and order 96 are corrupted by so severe correlated noise that nearly no clear signal can be seen without using
decorrelation filtering. Consequently, the global mass change trends (in 1o × 1o grids) estimated from the
four models are presented in Figure 12. It demonstrates that (1) striping noise over the zones near the equa-
tor are significantly suppressed in both Tongji‐Grace2018 and ITSG‐Grace2018 in comparison with those in
CSR RL06 and GFZ RL06; (2) signal patterns over Greenland, Antarctica, North America, and South
America derived from Tongji‐Grace2018 and ITSG‐Grace2018 are much clearer than those from other mod-
els; and (3) particularly in the polar areas, the signal patterns from Tongji‐Grace2018 and ITSG‐Grace2018
become significantly clearer in contrast with those from others.

Even though the decorrelation filtering has been applied to the four models, the corresponding mass change
trends are still contaminated by the remaining noise. To considerably suppress the remaining noise, the
Gaussian smoothing (Jekeli, 1981) with a reasonable smoothing radius will be employed in addition to
the decorrelation filtering. It is worthwhile to point out that a larger smoothing radius will reduce the spatial
resolution, but a smaller one may lead to much more remaining noise. Therefore, a reasonable smoothing
radius should be consistent with the practical spatial resolution of the GRACE models. Considering the
improvements of ITSG‐Grace2018 and Tongji‐Grace2018 with respect to others (CSR RL06 and GFZ
RL06) at high degrees (particularly over 60) as shown in Figures 10 and 11, one may wonder whether the
improved accuracies at high degrees allow for clear distinction of practical spatial resolution between the
improved models (Tongji‐Grace2018 and ITSG‐Grace2018) and others. To answer this issue, a strategy is
adopted as follows: The Gaussian smoothing with increasing smoothing radius (i.e., 100, 150, 200, 250,

Figure 12. Global mass change trends derived from four GRACE models processed by P4M6 decorrelation filtering.
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and 300 km) and the P4M6 decorrelation filtering are applied to process all the models up to the point that
most striping noise in the global mass change trends estimated from either ITSG‐Grace2018 or Tongji‐
Grace2018 disappear. As a consequence, the smoothing radius of 300 km is the point we are looking for,
which reduces most striping noise in ITSG‐Grace2018 and Tongji‐Grace2018. Nevertheless, as presented in
Figure 13, the corresponding global mass change trend maps from the four models over the period April
2002 to August 2016 do not show significant discrepancy in either signal pattern or striping noise. This
finding indicates that the spatial resolutions of these GRACE models are overall comparable, which can
be understandable since a lot of refined data processing strategies and up‐to‐date standards have been
applied to improve all the models in terms of accuracies and resolutions (Bettadpur, 2018; Dahle et al.,
2018; Mayer‐Gürr et al., 2018; Yuan, 2018).

In physical sense, the spatial distributions of stripes to some extent are related to the GRACE orbit config-
uration. As explained in previous studies (e.g., Chen et al., 2018Dobslaw et al., 2016), the large orbit inclina-
tion (about 89°) for GRACE satellites leads to oversampling in the polar areas and sparser ground track
coverage over medium and low latitude areas. As a consequence, much more striping errors over the
medium‐ and low‐latitude areas exist in all the models in contrast to over the polar areas. To further compare
the noise distributions among the four models, RMS values of mass change residuals are depicted in
Figure 14 for the period April 2002 to August 2016 after removing the estimated dominant signal terms (bias,
trend, acceleration, annual, semiannual, and S2 alias). Since the dominant mass change signals have been
subtracted and the oceanic tidal and nontidal effects have been modeled when solving the gravity field solu-
tions (Chen et al., 2018), the resulting RMS values over ocean areas are approximately regarded as noise
levels of the GRACE models in this study. One can see that the medium‐ and low‐latitude areas are domi-
nated by noise for the four models in spite of the significant noise reductions over the polar areas. As antici-
pated, much smaller RMS values over oceans are clearly observed in both Tongji‐Grace2018 and ITSG‐
Grace2018 compared to in CSR RL06 and GFZ RL06.

Despite the significant noise reductions achieved by Tongji‐Grace2018 and ITSG‐Grace2018 in the case of
only applying decorrelation filtering in comparison to CSR RL06 and GFZ RL06, the errors over oceans still
cannot be completely neglected for any of the abovemodels. Nevertheless, when the combined filtering (300‐

Figure 13. Global mass change trends estimated from four filtered GRACE models.
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km Gaussian smoothing and decorrelation filtering) are applied, the RMS values of residual mass changes
are distinctly reduced for all the models, which are plotted in Figure 15. Even though the combined
filtering effectively suppresses the noise in most areas, CSR RL06 and GFZ RL06 models still suffer from
much more noise over ocean areas near the equator than both ITSG‐Grace2018 and Tongji‐Grace2018.
The remaining mass variations over Greenland, Antarctica, North America, South America, Africa, and
India are primarily caused by the signals not captured by the bias, trend, acceleration, annual, semiannual,
and S2 alias parametrization. To quantify the noise levels of the four models, the mean RMS values over the
global oceans in the decorrelation filtering and combined filtering cases are given in Table 7. One can see
from Table 7 that Tongji‐Grace2018 and ITSG‐Grace2018 achieve much more noise decrease over oceans
in both filtering cases when comparing to other models. For the case of Tongji‐Grace2018, it reaches 35%
and 7% of improvements with respect to CSR RL06 in the decorrelation filtering and combined filtering
cases, respectively. It is a remarkable fact that the applied Gaussian smoothing contributes nearly 25 times
noise reductions over oceans for CSR RL06 and GFZ RL06, but for Tongji‐Grace2018, it only achieves about
17 times noise reductions. This finding suggests that the optimized methodologies applied to compute
Tongji‐Grace2018 greatly suppresses the spatial noise in gravity field estimates.

5.3. Temporal Noise Over Pacific and Sahara

The previous two subsections have discussed the noise behaviors of Tongji‐Grace2018 models in the spectra
and space domains. In this section, we primarily focus on noise comparisons among the above GRACE
monthly solutions in the time domain. As motivated by the fact that the mass variations over oceans and
deserts are anticipated to be smaller, this section studies the temporal noise behaviors of the above
GRACE models over Pacific ([28N, 51°N],[170°E,220°E]) and Sahara desert ([15°N,35°N],[0°E,35°E]).
Using the same analysis method as in section 5.2, the suitable Gaussian smoothing radius for the cases over
Pacific and Sahara is determined to be 300 km as well. Based on the decorrelation filtering, the time series of
mass changes over Pacific and Sahara in the time interval April 2002 to August 2016 from the four models
are produced in the cases with and without using 300‐km Gaussian smoothing. As depicted in Figure 16,
clear discrepancies of mass changes between decorrelation filtering and combined filtering can be found.

Figure 14. Root‐mean‐square values of global mass change residuals of GRACE models processed by decorrelation filtering.
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Over Pacific and Sahara, the mass changes on the basis of the four models show some differences in the case
of only using decorrelation filtering.

To get more insights into the discrepancies among the four models, we further remove the primary signal
terms (bias, trend, acceleration, annual, semiannual, and S2 alias terms) from the estimated mass changes
and compute the RMS values of residuals. Following this method, the time series of RMS values together
with the statistics for both decorrelation filtering and combined filtering cases are separately given in
Figure 17 and Table 8 to describe the temporal variations in noise for different GRACE models over the
two areas. Both Figure 17 and Table 8 demonstrate that Tongji‐Grace2018 and ITSG‐Grace2018 have less
noise than other models. One can clearly see from Table 8 that, over Sahara desert, about 36% and 19% of
noise is reduced by Tongji‐Grace2018 relative to CSR RL06 in the decorrelation filtering and combined filter-
ing cases, respectively. However, as indicated in Table 8, in the case of using the same decorrelation filtering,
Tongji‐Grace2018 and ITSG‐Grace2018 based on 250‐km Gaussian smoothing do not perform better than
other two models based on 300‐km Gaussian smoothing. In particular, for all the GRACE models, dramatic
increases of noise occurred in early GRACE and some particular months (including September to October in
2004, June to July in 2012, and January to February in 2015). It is worth noting that the early GRACE suf-
fered from missing observations (before 2003) and the above months experienced repeat ground track.
However, the missing observations and repeat ground track directly impact the stability of normal equa-

tions, which eventually degrade the geopotential coefficients to be esti-
mated. Especially for the high degrees (e.g., over degree 60), the impacts
of missing observations and repeat ground track will become much more
remarkable. In our own experiments (not shown), we truncated all the
models to degree and order 60 and did the same noise analyses over
Pacific and Sahara. As expected, the noise over those months with data
quality degradation was found to be reduced to a great extent. We there-
fore believe the differences of noise levels among the four GRACE models
over those months with poor observation condition as indicated in

Table 7
Mean RMS Values (in Unit of Centimeters) of Mass Change Residuals Over
the Global Oceans

Filtering
CSR
RL06

GFZ
RL06

ITSG‐
Grace2018

Tongji‐
Grace2018

Improvement
rate

P4M6 68.6 72.0 48.0 44.7 35%
P4M6+Gauss 2.8 2.9 2.4 2.6 7%

Figure 15. Root‐mean‐square values of the global mass change residuals of filtered GRACE models.
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Figure 16. Time series of mass changes over Pacific and Sahara derived from GRACE models with and without Gaussian smoothing applied.

Figure 17. Time series of root‐mean‐square (RMS) values of residual mass changes derived from GRACE models.
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Figure 17 are mainly attributed to the differences of stabilities among varying gravity field modeling
methods to the poor observation condition.

6. Signal Levels of Monthly Gravity Field Solutions

Every GRACE model simultaneously includes signals and noise. In view of the differences of the noise
between Tongji‐Grace2018 and other monthly gravity field models, further analyses on the signal levels of
these models are conducted here. For comparisons of signal levels among the above models, this study
selects four river basins and Greenland to see the mass changes related to hydrology process and ice
melting, respectively.

Table 8
Mean Root‐Mean‐Square Values (in Unit of Centimeters) of Mass Change Residuals Over Pacific and Sahara

Area Filtering CSR RL06 GFZ RL06 ITSG‐Grace2018 Tongji‐Grace2018 Improvement rate

Pacific P4M6 53.6 59.2 36.4 38.2 29%
P4M6+300km Gauss 1.9 2.1 1.6 1.9 0%
P4M6+250km Gauss * * 2.3 2.8 *

Sahara P4M6 85.5 83.4 46.6 54.9 36%
P4M6+300km Gauss 3.1 3.3 1.9 2.5 19%
P4M6+250km Gauss * * 3.4 4.2 *

Figure 18. Time series of mass changes over river basins derived from mascon solution and filtered GRACE models.
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6.1. Time‐Variable Signals Over River Basins

Considering that temporal behaviors of mass changes over river basins with different sizes may be varying,
in this study, we select two large river basins (i.e., Amazon and Mississippi) and another two small river
basins (i.e., Irrawaddy and Taz) to show the time‐variable signals. The basic definitions of the four studied
river basins are all taken from the Hydro website (http://hydro.iis.u‐tokyo.ac.jp/~taikan/TRIPDATA/
TRIPDATA.html). In this section, the following strategies are used in mass change estimates: (1) A P4M6

decorrelation filtering (Chen et al., 2009) in addition to Gaussian smoothing is applied during producing
the time series of mass changes from the four GRACE models, and (2) to account for leakage issue, leakage
biases are estimated by using least squares method and employed to correct GRACE‐based mass changes
(Klees et al., 2007). In view of the improved accuracies in Tongji‐Grace2018 and ITSG‐Grace2018, the
Gaussian smoothing radius is chosen to be 250 km for them, while for the case of CSR RL06 and GFZ
RL06, the corresponding smoothing radius is 300 km. The resulting time series of mass changes based on

Table 9
Mean Annual Amplitudes and Phases Over River Basins

Area

CSR RL06 GFZ RL06 ITSG‐Grace2018 Tongji‐Grace2018 JPL Mascon

Amplitude| Phase Amplitude| Phase Amplitude|Phase Amplitude| Phase Amplitude| Phase

Amazon ⟨22.8cm| 96°⟩ ⟨22.5cm| 96°⟩ ⟨23.4cm| 98°⟩ ⟨23.3cm| 96°⟩ ⟨24.7cm| 111°⟩
Mississippi ⟨6.5cm| 112°⟩ ⟨6.4cm| 111°⟩ ⟨6.5cm| 113°⟩ ⟨6.6cm| 111°⟩ ⟨6.0cm| 100°⟩
Irrawaddy ⟨26.6cm| 291°⟩ ⟨25.3cm| 291°⟩ ⟨27.3cm| 290°⟩ ⟨27.0cm| 292°⟩ ⟨34.8cm| 296°⟩
Taz ⟨10.4cm| 126°⟩ ⟨10.6cm| 126°⟩ ⟨10.5cm| 128°⟩ ⟨10.7cm| 128°⟩ ⟨10.3cm| 103°⟩

Figure 19. Annual amplitudes of mass changes over Amazon basin derived from different GRACE models.
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CSR RL06 and GFZ RL06, ITSG‐Grace2018, and Tongji‐Grace2018 are provided in Figure 18. Apart from the
four time series of mass changes based on the filtered GRACE harmonic models, JPL RL06Mascon solutions
(Watkins et al., 2015) developed by using mascon technique are also included for comparison, since mascon
technique is generally believed to improve the mass transport estimates (Luthcke et al., 2013; Save et al.,
2016; Watkins et al., 2015). As we can see from Figure 18, Tongji‐Grace2018 shows a good agreement with
other models in terms of equivalent water heights over all the river basins. The correlation coefficients of

Table 10
Mean RMS and SNR values

Area

CSR RL06 GFZ RL06 ITSG‐Grace2018 Tongji‐Grace2018

RMS|SNR RMS|SNR RMS|SNR RMS|SNR

Amazon ⟨281cm| 0.08⟩ ⟨407cm| 0.06⟩ ⟨213cm| 0.12⟩ ⟨263cm| 0.09⟩
Mississippi ⟨232cm| 0.03⟩ ⟨393cm| 0.02⟩ ⟨158cm| 0.04⟩ ⟨195cm| 0.04⟩
Irrawaddy ⟨245cm| 0.11⟩ ⟨328cm| 0.08⟩ ⟨174cm| 0.16⟩ ⟨216cm| 0.12⟩
Taz ⟨94cm| 0.12⟩ ⟨144cm| 0.08⟩ ⟨80cm| 0.14⟩ ⟨68cm| 0.17⟩

Note. RMS = root‐mean‐square; SNR = signal‐to‐noise ratio.

Figure 20. Signal‐to‐noise ratio values of mass changes over Amazon basin for different GRACE models.
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mass changes over the four regions between Tongji‐Grace2018 and others are all over 92%. The comparable
performances of Tongji‐Grace2018 in both large and small river basins demonstrate that Tongji‐Grace2018 is
as sensitive as other models to hydrology signals though a smaller smoothing radius (250 km) is used. For
quantifying the signal levels of the GRACE models, further analyses are carried out by estimating mean
annual amplitudes and phases over the four river basins. As given in Table 9, the mean annual amplitudes
and phases over the four basins estimated from Tongji‐Grace2018 tend to be very close to those from other
models (especially to CSR RL06, GFZ RL06, and ITSG‐Grace2018). Both Figure 18 and Table 9 suggest that
Tongji‐Grace2018 and ITSG‐Grace2018 are able to achieve the comparable mass changes as other solutions
in the case of using a smaller smoothing radius (250 km).

For further comparison, we calculate the spatial distributions of annual amplitudes over Amazon basin esti-
mated from the five models, which are displayed in Figure 19. Comparing the estimated annual amplitudes
based on Tongji‐Grace2018 to those derived from other models, a very good agreement can be found.
Although the signal levels among different models are almost the same, the quality of various models is vary-
ing since every GRACE model contains both signals and noise. To reasonably assess the quality of the
GRACE models except for mascon solution over the studied area, one feasible method is to separate the sig-
nals from noise and compute the SNR (signal‐to‐noise ratio) values. In order to do so, this analysis takes the
following steps: (a) The primary signal terms (bias, trend, acceleration, annual, semiannual, and S2 alias
components) are estimated from the postprocessed time series of mass changes (processed by filtering and
corrected by leakage biases); (b) the residual mass changes are computed by subtracting the postprocessed
mass changes from the unfiltered mass changes, and then the mean RMS values of residuals are approxi-
mately regarded as the noise of the unfiltered GRACE models since the residuals are severely contaminated
by noise; (c) as the above four river basins are primarily contributed by annual signal, the estimated annual
amplitudes can be regarded as signal; and (d) the computed annual amplitude along with the mean RMS
values are eventually applied to derive the SNR values according to SNR = Amplitude/RMS. Note that we
cannot do the same SNR analyses for JPLMascon solution since the mascon solution has been postprocessed
by using regularization technique and the noise of the unfiltered mascon solution is not accessible.

As a result, the mean RMS and average SNR values are presented in Table 10, which shows that the improve-
ments contributed by Tongji‐Grace2018 and ITSG‐Grace2018 are significant. Among the four harmonic
models, Tongji‐Grace2018 and ITSG‐Grace2018 have less noise and higher SNR over all the river basins.
In comparison to CSR RL06, Tongji‐Grace2018 has reduced the noise by 6% in Amazon, 22% in
Mississippi, 12% in Irrawaddy, and 28% in Taz. In the four areas, the SNR values of Tongji‐Grace2018 and

Figure 21. Signal‐to‐noise ratio values of mass changes over Irrawaddy basin for various GRACE models.
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ITSG‐Grace2018 are larger than those of CSR RL06 and GFZ RL06.
Additionally, we plot the spatial distributions of the SNR values over the
large river basin Amazon and small river basin Irrawaddy for the four har-
monic models in Figures 20 and 21, separately. As shown in Figures 20
and 21, among the four harmonic models, Tongji‐Grace2018 and ITSG‐
Grace2018 achieve the higher SNR values in both river basins. Even in
the other two basins (results are not shown), the results are the same.

6.2. Mass Transport in Greenland

As one of the high‐profile studied areas, Greenland is experiencing severe
ice melting. The GRACEmonthly solutions have been demonstrated to be
sensitive to mass losses caused by the significant ice melting in Greenland
(Velicogna, 2009). In an attempt to answer whether Tongji‐Grace2018
models are able to retrieval mass losses related to ice melting, following
the same postprocessing procedure as used in section 6.1, we compare
the mass changes derived from Tongji‐Grace2018 for the period April

2002 to August 2016 to those from other models (CSR RL06, GFZ RL06, ITSG‐Grace2018, and JPL RL06
Mascon) in Figure 22. Here we should point out that the smoothing radius used for ITSG‐Grace2018 and
Tongji‐Grace2018 is 250 km, while CSR RL06 and GFZ RL06 use a slightly larger smoothing radius of 300
km. Since the GIA impacts have been removed from JPL RL06 Mascon solution on the basis of ICE6G
Glacial Isostatic Adjustment (GIA) model (Peltier et al., 2018), the same GIA model is applied to other
GRACE models.

Interestingly, as indicated in Figure 22, the temporal behaviors of mass changes over Greenland among the
four harmonic models are generally in good agreement, where the dramatic decrease of mass change and
annual variation over Greenland can be captured by all the models. The correlation coefficients of mass
changes between Tongji‐Grace2018 and other three harmonic models are all more than 99.5%. However,
compared to JPL Mascon solution, all the harmonic models suffer from apparent trend underestimates.
Applying the same time series analysis method as used in section 6.1, the prominent signal components
are estimated for the five models. The spatial distributions of the estimated trends from the five models
are given in Figure 23. As we can observe from Figure 23, the four harmonic models agree well with each
other, but JPL Mascon has much higher spatial resolution and stronger trend estimates. In Figure 23, most

Figure 22. Time series of mass changes over Greenland derived from four
GRACE models.

Figure 23. Trends of mass changes in Greenland derived from GRACE harmonic and mascon models.
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of the significant ice losses concentrate on West and South of Greenland. This study also presents the statis-
tics of the mass changes over Greenland in Table 11. It reveals that the signal level of Tongji‐Grace2018 is
comparable to those of CSR RL06, GFZ RL06, and ITSG‐Grace2018 in terms of trend, annual amplitude,
and annual phase. Using the same noise analysis method as used in section 6.1, the mean RMS values of
mass change residuals for the four harmonic models are also given in Table 11, which suggests that the least
noise belongs to Tongji‐Grace2018 over Greenland.

7. Conclusions

Although the GRACE mission came to an end in 2017, seeking for any improvement of current GRACE
gravity field estimates is very important in both geodesy and geophysics. To improve the gravity field esti-
mates, an optimized short‐arc method is proposed to gravity field modeling in this paper. One drawback
of the modified short‐arc method presented in Chen et al. (2015) is that it needs the large‐dimension inter-
mediate matrix (DQDT) in equation (24) to be inversed prior to creating the normal equation. To overcome
this drawback, the optimized method avoids direct inversion of (DQDT) through introducing an improved
parameterization by treating boundary vectors in any integral arc as parameters to be solved. The improved
parameterization makes matrix D an invertible matrix, which eventually allows the inversion of the inter-
mediate matrix (DQDT) to be computed for orbits and range rate separately. In addition, with the purpose
of accounting for the frequency‐dependent noise in both kinematic orbits and range rates, the variance‐
covariance matrices for observations are constructed by using the noise whitening technique described in
section 3.1. Numerical analyses of the optimized short‐arc method demonstrate that (1) in comparison to
the modified short‐arc approach, the optimized short‐arc approach greatly reduces the condition number
of the final normal equation for estimating gravity field parameters, which eventually allows the arc length
to be extended for the optimized method; (2) 6‐hr arc length is demonstrated to be optimum for our
improved approach since it achieves most significant noise reduction in gravity field estimation; (3) the con-
structed variance‐covariancematrices for both orbits and range rates are beneficial for reducing the effects of
frequency‐dependent noise at low frequencies, which improves the derived gravity field solutions; (4)
already for range rate observations, the benefits from modeling frequency‐dependent noise are obvious,
but concurrent frequency‐dependent noise modeling for both orbit and range rate data can further decrease
the noise in the estimated gravity fields; and (5) the optimized short‐arc method consistently performs better
than the modified short‐arc approach, no matter whether frequency‐dependent noise modeling is applied or
not, since the inversion of the intermediate matrix Ds

j s ¼ A;Bð Þ in each integral arc has been stabilized.

Based on the optimized short‐arc method, a refined time series of GRACE monthly solutions Tongji‐
Grace2018 is produced, which is available at the ICGEM (http://icgem.gfz-potsdam.de/ICGEM/). To inves-
tigate the quality of Tongji‐Grace2018 models, we analyze the noise levels in terms of geoid degree variances
and errors over oceans and desert together with signal levels over river basins and Greenland. Our analyses
allow us to draw the following conclusions:

1. The geoid degree variance comparisons up to degree 96 among CSR RL06, GFZ RL06, HUST‐Grace2016,
IGG RL01, ITSG‐Grace2018, and Tongji‐Grace2018 suggest that the signal level of Tongji‐Grace2018 at
low degrees (below degree 30) is in a good agreement with others. Nevertheless, compared to CSR
RL06 and GFZ RL06, the noise (above degree 60) in Tongji‐Grace2018 in terms of cumulative geoid
degree variance up to degree 96 is reduced by about 25% and 40%, respectively. Overall, Tongji‐
Grace2018 is closer to ITSG‐Grace2018.

Table 11
Statistics of Mass Changes Over Greenland

Item CSR RL06 GFZ RL06 ITSG‐Grace2018 Tongji‐Grace2018 JPL Mascon

Trend −4.8 cm/year −4.8 cm/year −4.9 cm/year −4.9 cm/year −6.8 cm/year
Amplitude 5.6 cm 5.5 cm 5.9 cm 5.8 cm 6.3 cm
Phase 151° 151° 151° 151° 116°
RMS 78cm 98cm 53cm 46cm *

Note. JPL = Jet Propulsion Laboratory.
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2. In the cases of applying decorrelation filtering and combined filtering, the global mass change trend esti-
mated from Tongji‐Grace2018 is less noisy than those from CSR RL06 and GFZ RL06. Nomatter whether
Gaussian smoothing is employed or not, Tongji‐Grace2018 reduces the noise over oceans in comparison
with CSR RL06 and GFZ RL06; 35% and 7% of noise reductions over the global oceans relative to CSR
RL06 are obtained by Tongji‐Grace2018 in the cases of applying decorrelation filtering and combined fil-
tering, respectively. Further investigations over Pacific and Sahara also confirm this result.

3. The comparable mass changes and amplitudes from Tongji‐Grace2018 over river basins (Amazon,
Mississippi, Irrawaddy, and Taz) and Greenland demonstrate that the signal amplitudes among the four
models are comparable. The statistics results supports that the mass changes over the four river basins
and Greenland from CSR RL06, GFZ RL06, ITSG‐Grace2018, Tongji‐Grace2018, and JPL Mascon are
in good agreement, where the correlation coefficients are all over 92%. However, JPL Mascon solution
overall has improved the mass transport estimates in terms of signal amplitude and spatial resolution.
In spite of the comparable signal levels among the four harmonic models, the quality assessment results
prove that Tongji‐Grace2018 and ITSG‐Grace2018 have less noise and higher SNR.
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