70 research outputs found

    CFD Modeling of Reacting Diesel Sprays with Primary Reference Fuel

    Full text link
    [EN] Computational fluid dynamics (CFD) modeling has many potentials for the design and calibration of modern and future engine concepts, including facilitating the exploration of operation conditions and casting light on the involved physical and chemical phenomena. As more attention is paid to the matching of different fuel types and combustion strategies, the use of detailed chemistry in characterizing auto-ignition, flame stabilization processes and the formation of pollutant emissions is becoming critical, yet computationally intensive. Therefore, there is much interest in using tabulated approaches to account for detailed chemistry with an affordable computational cost. In the present work, the tabulated flamelet progress variable approach (TFPV), based on flamelet assumptions, was investigated and validated by simulating constant-volume Diesel combustion with primary reference fuels - binary mixtures of n-heptane and iso-octane. Simulations were initially carried out to evaluate and compare the performance of two kinetic models in homogeneous reactors and laminar diffusion flames, followed by turbulent reacting spray simulations considering different fuels, ambient temperatures, and oxygen concentrations. The sensitivity study of the turbulent Schmidt number was then conducted, and results in terms of ignition delay and lift-off length were compared with experimental data to determine a more appropriate global constant. Finally, parametric variations of ambient temperature and oxygen concentration were performed for six fuel blends ranging from PRF0 (n-heptane) to PRF100 (iso-octane), confirming the validity of the TFPV model.Authors acknowledge the financial support from the China Scholarship Council (No. 201806230180) and Natural Science Foundation of China (No. 51961135105) for the first author's study in Politecnico di Milano, ItalyZhou, Q.; Lucchini, T.; D'errico, G.; Novella Rosa, R.; García-Oliver, JM.; Lu, X. (2021). CFD Modeling of Reacting Diesel Sprays with Primary Reference Fuel. SAE International. 1-19. https://doi.org/10.4271/2021-01-040911

    Battery-SOC Estimation for Hybrid-Power UAVs Using Fast-OCV Curve with Unscented Kalman Filters

    Get PDF
    Unmanned aerial vehicles (UAVs) have drawin increasing attention in recent years, and they are widely applied. Nevertheless, they are generally limited by poor flight endurance because of the limited energy density of their batteries. A robust power supply is indispensable for advanced UAVs; thus hybrid power might be a promising solution. State of charge (SOC) estimation is essential for the power systems of UAVs. The limitations of accurate SOC estimation can be partly ascribed to the inaccuracy of open circuit voltage (OCV), which is obtained through specific forms of identification. Considering the actual operation of a battery under hybrid conditions, this paper proposes a novel method, “fast OCV”, for obtaining the OCVs of batteries. It is proven that fast OCV offers great advantages, related to its simplicity, duration and cost, over traditional ways of obtaining OCV. Moreover, fast-OCV also shows better accuracy in SOC estimation than traditional OCV. Furthermore, this paper also proposes a new method, “batch mode”, for talking-data sampling for battery-parameter identification with the limited-memory recursive least-square algorithm. Compared with traditional the “single mode”, it presents good de-noising effect by making use of all the sampled battery’s terminal current and voltage data.This research was funded by Spanish Government, grant number PID2019-104793RB-C31 and PID2021-124335OB-C21; Comunidad de Madrid, grant number SEGVAUTO-4.0-CM (P2018/EMT-4362); and National Natural Science Foundation of China, grant number 52236007 and 52106176

    Atomic Sn–enabled high-utilization, large-capacity, and long-life Na anode

    Get PDF
    Constructing robust nucleation sites with an ultrafine size in a confined environment is essential toward simultaneously achieving superior utilization, high capacity, and long-term durability in Na metal-based energy storage, yet remains largely unexplored. Here, we report a previously unexplored design of spatially confined atomic Sn in hollow carbon spheres for homogeneous nucleation and dendrite-free growth. The designed architecture maximizes Sn utilization, prevents agglomeration, mitigates volume variation, and allows complete alloying-dealloying with high-affinity Sn as persistent nucleation sites, contrary to conventional spatially exposed large-size ones without dealloying. Thus, conformal deposition is achieved, rendering an exceptional capacity of 16 mAh cm−2 in half-cells and long cycling over 7000 hours in symmetric cells. Moreover, the well-known paradox is surmounted, delivering record-high Na utilization (e.g., 85%) and large capacity (e.g., 8 mAh cm−2) while maintaining extraordinary durability over 5000 hours, representing an important breakthrough for stabilizing Na anode

    Modelling Internal Combustion Engines with Dynamic Staggered Mesh Refinement

    No full text
    Combustion Theory and Modelling2401142-17

    Large eddy simulation of spray and combustion characteristics of biodiesel and biodiesel/butanol blend fuels in internal combustion engines

    No full text
    Biofuel is a crucial renewable and environmentally friendly energy source for addressing greenhouse gas emissions and other energy-related issues. Biodiesel and butanol, among alternative biofuels, possess complementary physical and chemical properties, offering multiple possibilities for their use in existing internal combustion engines. However, biodiesel’s distinctly different physical and combustion properties from conventional diesel fuels make its combustion process substantially different. The complex composition of biodiesel presents significant challenges in accurately simulating its spray combustion characteristics. This paper presents a systematic evaluation of six single-component surrogate fuel models and a five-component model for the prediction of biodiesel spray characteristics under various conditions using large-eddy simulation (LES). The results show that single-component surrogate fuel models can only predict the gaseous penetration of biodiesel but not the liquid-phase penetration. A five-component fatty acid methyl ester surrogate fuel model is proposed, demonstrating an accurate simulation of biodiesel spray evaporation characteristics under different conditions. Based on the five-component evaporation model, LES is utilized to examine three strategies of biodiesel/butanol-fueled internal combustion engines: direct injection of pure biodiesel in conventional diffusion-controlled combustion (CDC) engines, direct injection of biodiesel–butanol blend in CDC engines, and biodiesel/butanol reactivity-controlled compression ignition (RCCI) engines. The simulation results are validated against engine experiment results, showing that the five-component model can successfully predict spray and combustion characteristics in internal combustion engines. The RCCI concept can significantly reduce NOx emissions; however, CO and UHC emissions are higher than in the CDC engines due to incomplete combustion in the fuel-lean butanol/air mixture

    Premixed ignition characteristics of blends of gasoline and diesel-like fuels on a rapid compression machine

    No full text
    Fuel ignition process is of importance in premixed diesel low-temperature combustion strategies because longer ignition delay could provide more fuel and air mixing time. Using blends of gasoline and diesel-like fuels might be a possible way for the ignition delay extension. In this study, a rapid compression machine is employed to investigate the characteristics of premixed ignition processes of blends of n-heptane and commercial gasoline. The proportion of gasoline in blended fuels and the compression ratio in this rapid compression machine are varied to investigate the effects of fuel component and compression ratio on ignition processes. It is found that blended test fuels have two-stage increases in their cylinder pressure traces, indicating that a low temperature heat release process exists before the main combustion stage. Increased gasoline proportion in test fuels reduces peak cylinder pressure and maximum pressure rise rates, while the 1st, 2nd and overall ignition delay are extended. Increased compression ratio elevates the peak cylinder pressure, and shortens the 1st stage, 2nd stage and overall ignition delays. The maximum pressure rising rates are also increased with compression ratio, so when the low gasoline proportion test fuels are used, knock combustion tends to occur at high compression ratio conditions. However, as long as the gasoline proportion increases to a sufficient level, knock combustion is avoided

    High-efficiency combustion of gasoline compression ignition (GCI) mode with medium-pressure injection of low-octane gasoline under wide engine load conditions

    No full text
    Gasoline Compression Ignition (GCI) mode with medium injection pressure has the potential to achieve high engine efficiency while keeping costs low. In this study, the combustion and emission characteristics of GCI mode with medium-pressure injection of low-octane gasoline were studied and compared to conventional diesel combustion (CDC) under wide engine loads. The results showed that under low to medium loads, GCI mode had improved particulate emissions and indicated thermal efficiency (ITE) compared to CDC mode. However, at high loads, the PM emissions were much higher than CDC mode, and the ITE decreased for IMEP increasing from 10 to 12 bar due to limited injection pressure. To address this, a dual direct injection GCI mode with medium injection pressure was proposed to improve combustion under high loads. With this strategy, NOx emissions were significantly reduced, and ITE was simultaneously improved for IMEP of 10 and 12 bar. Using low octane gasoline and dual direct injection, the ITE of GCI mode can reach or exceed 50% for IMEP from 4 to 12 bar. Compared to gasoline with a research octane number (RON) of 83, gasoline with an RON of approximately 72 had higher ITE under most tested conditions and is recommended as the fuel for GCI mode
    corecore