1,545 research outputs found

    Reinforcement Learning Ramp Metering without Complete Information

    Get PDF
    This paper develops a model of reinforcement learning ramp metering (RLRM) without complete information, which is applied to alleviate traffic congestions on ramps. RLRM consists of prediction tools depending on traffic flow simulation and optimal choice model based on reinforcement learning theories. Moreover, it is also a dynamic process with abilities of automaticity, memory and performance feedback. Numerical cases are given in this study to demonstrate RLRM such as calculating outflow rate, density, average speed, and travel time compared to no control and fixed-time control. Results indicate that the greater is the inflow, the more is the effect. In addition, the stability of RLRM is better than fixed-time control

    Solving Dynamic Multi-objective Optimization Problems Using Incremental Support Vector Machine

    Full text link
    The main feature of the Dynamic Multi-objective Optimization Problems (DMOPs) is that optimization objective functions will change with times or environments. One of the promising approaches for solving the DMOPs is reusing the obtained Pareto optimal set (POS) to train prediction models via machine learning approaches. In this paper, we train an Incremental Support Vector Machine (ISVM) classifier with the past POS, and then the solutions of the DMOP we want to solve at the next moment are filtered through the trained ISVM classifier. A high-quality initial population will be generated by the ISVM classifier, and a variety of different types of population-based dynamic multi-objective optimization algorithms can benefit from the population. To verify this idea, we incorporate the proposed approach into three evolutionary algorithms, the multi-objective particle swarm optimization(MOPSO), Nondominated Sorting Genetic Algorithm II (NSGA-II), and the Regularity Model-based multi-objective estimation of distribution algorithm(RE-MEDA). We employ experiments to test these algorithms, and experimental results show the effectiveness.Comment: 6 page

    Expression of hydrogen sulfide, hydrogen-sulfide synthase and cyclooxygenase-2, and their mechanisms of action in amniotic tissues

    Get PDF
    Purpose: To investigate the expressions of cystathionine β-synthase (CBS), cystathionine γ - lyase (CSE) and cyclooxygenase - 2 (COX - 2) and their relationships with premature delivery in amniotic tissues.Methods: Parturients were divided into three groups: 40 preterm-labor parturients (PTL group), 28 term-labor parturients (TL group), and 28 term non-labor parturients (TNL group). Changes in expressions of CBS, CSE and COX-2 were determined by Western blot (WB) in amniotic tissues of parturients in the three groups. The expression of COX - 2 was determined after the amniotic tissues of parturients in the TNL group were cultured in vitro and processed by exogenous hydrogen-sulfide (H2S).Results: The expression level of COX - 2 was significantly lower in the TNL group, when compared with the PTL and TL groups (p < 0.05). The  expression of CBS was increased in the order PTL > TL > TNL, with TNL group having the highest level, and there were significant differences in CBS expressions among the three groups (p < 0.05).Conclusion: These results suggest that when the expressions of CBS and CSE are down-regulated, the decreased H2S synthesis promotes the overexpression of COX - 2 by NF - kB signaling pathway, causing increased prostaglandin synthesis which results in premature delivery.Keywords: Cystathionine β - synthase, Cystathionine γ - lyase,  Cyclooxygenase - 2; Amniotic tissues; Preterm labo

    Structure-driven intercalated architecture of septuple-atomic-layer MA2Z4MA_2Z_4 family with diverse properties from semiconductor to topological insulator to Ising superconductor

    Full text link
    Motivated by the fact that septuple-atomic-layer MnBi2_2Te4_4 can be structurally viewed as the combination of double-atomic-layer MnTe intercalating into quintuple-atomic-layer Bi2_2Te3_3, we present a general approach of constructing twelve septuple-atomic-layer αi\alpha_i- and βi\beta_i-MA2Z4MA_2Z_4 monolayer family (\emph{i} = 1 to 6) by intercalating MoS2_2-type MZMZ2_2 monolayer into InSe-type A2_2Z2_2 monolayer. Besides reproducing the experimentally synthesized α1\alpha_1-MoSi2_2N4_4, α1\alpha_1-WSi2_2N4_4 and β5\beta_5-MnBi2_2Te4_4 monolayer materials, another 66 thermodynamically and dynamically stable MA2Z4MA_2Z_4 were predicted, which span a wide range of properties upon the number of valence electrons (VEC). MA2Z4MA_2Z_4 with the rules of 32 or 34 VEC are mostly semiconductors with direct or indirect band gap and, however, with 33 VEC are generally metal, half-metal ferromagnetism, or spin-gapless semiconductor upon whether or not an unpaired electron is spin polarized. Moreover, we propose α2\alpha_2-WSi2_2P4_4 for the spin-valley polarization, α1\alpha_1-TaSi2_2N4_4 for Ising superconductor and β2\beta_2-SrGa2_2Se4_4 for topological insulator.Comment: Maintext 9 pages; 5 figures; Supplementary Materials 8 figures and 4 table

    Mitochondrial BNIP3 upregulation precedes endonuclease G translocation in hippocampal neuronal death following oxygen-glucose deprivation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Caspase-independent apoptotic pathways are suggested as a mechanism for the delayed neuronal death following ischemic insult. However, the underlying signalling mechanisms are largely unknown. Recent studies imply the involvement of several mitochondrial proteins, including endonuclease G (EndoG) and Bcl-2/adenovirus E1B 19 kDa-interacting protein (BNIP3), in the pathway of non-neuronal cells.</p> <p>Results</p> <p>In this report, using western blot analysis and immunocytochemistry, we found that EndoG upregulates and translocates from mitochondria to nucleus in a time-dependent manner in cultured hippocampal neurons following oxygen-glucose deprivation (OGD). Moreover, the translocation of EndoG occurs hours before the observable nuclear pyknosis. Importantly, the mitochondrial upregulation of BNIP3 precedes the translocation of EndoG. Forced expression of BNIP3 increases the nuclear translocation of EndoG and neuronal death while knockdown of BNIP3 decreases the OGD-induced nuclear translocation of EndoG and neuronal death.</p> <p>Conclusion</p> <p>These results suggest that BNIP3 and EndoG play important roles in hippocampal neuronal apoptosis following ischemia, and mitochondrial BNIP3 is a signal protein upstream of EndoG that can induce neuronal death.</p

    Quantum phase transition of light in a 1-D photon-hopping-controllable resonator array

    Full text link
    We give a concrete experimental scheme for engineering the insulator-superfluid transition of light in a one-dimensional (1-D) array of coupled superconducting stripline resonators. In our proposed architecture, the on-site interaction and the photon hopping rate can be tuned independently by adjusting the transition frequencies of the charge qubits inside the resonators and at the resonator junctions, respectively, which permits us to systematically study the quantum phase transition of light in a complete parameter space. By combining the techniques of photon-number-dependent qubit transition and fast read-out of the qubit state using a separate low-Q resonator mode, the statistical property of the excitations in each resonator can be obtained with a high efficiency. An analysis of the various decoherence sources and disorders shows that our scheme can serve as a guide to coming experiments involving a small number of coupled resonators.Comment: 7 pages, 4 figure
    • …
    corecore