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This paper develops a model of reinforcement learning ramp metering (RLRM) without complete information, which is applied to
alleviate traffic congestions on ramps. RLRM consists of prediction tools depending on traffic flow simulation and optimal choice
model based on reinforcement learning theories. Moreover, it is also a dynamic process with abilities of automaticity, memory
and performance feedback. Numerical cases are given in this study to demonstrate RLRM such as calculating outflow rate, density,
average speed, and travel time compared to no control and fixed-time control. Results indicate that the greater is the inflow, the
more is the effect. In addition, the stability of RLRM is better than fixed-time control.

1. Introduction

Increasing dependence on car-based travel has led to the
daily occurrence of recurrent and nonrecurrent freeway
congestions not only in China but also around the world.
Congestion on highways forms when the demand exceeds
capacity. Recurrent congestion reduces substantially the
available infrastructure capacity at rush hour, that is, at the
time this capacity is most urgently needed. Moreover, con-
gestion also causes delays, increases environmental pollution,
and reduces traffic safety.

Ramp metering is essential to the efficient operation of
highways, particularly when volumes are high. According
to Papageorgiou and others, ramp metering is divided
roughly into the reacted type and the preceded type [1].
DC (demand-capacity), OCC (occupancy), and ALNEA
[2] are among the well-known local response type ramp
metering [3]. In DC, the actual upstream volume is measured
at regular short intervals and is then compared to the
downstream capacity, which may be calculated by using
downstream traffic conditions. OCC uses a predetermined
relationship between occupancy rate and lane volume,
developed from data previously collected at the highway
adjacent to the ramp being considered. ALNEA is the ramp

metering which sets up the private-use rate of an onramp
based on the measured value of main line traffic. ALINEA has
an example of application in some countries of Europe and
is made highly validated compared to DC and OCC. Iwata,
Tsubota, and Kawashima have proposed the ramp metering
technique using the predicted value by a traffic simulator
[4]. Reinforcement learning ramp metering based on traffic
simulation model with desired speed was proposed by Wang
et al. [5]. The aim of this study is to propose reinforcement
learning ramp metering without complete information.

2. Methods

2.1. Traffic Flow Simulation Model. Figure 1 describes car-
following behaviors. In a microsimulation model, a modeled
fundamental behavior is the “car-following” which adjusts
the driver’s characteristics: the distance between two adjacent
cars, the relative speed, and so forth.

In 1953, Pipes proposed the following basic differential
equation model for car-following behavior:

ẍn+1(t) = a[ẋn(t)− ẋn+1(t)], (1)

where ẍ, ẋ, and x denote the acceleration, speed, and distance
from the reference point of vehicle n, respectively, and a
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Figure 1: Car-following behavior.

is a constant. In the model, the acceleration of the vehicle
which follows a leading vehicle is proportional to the speed
difference between the vehicles. It is assumed that the delay
of time in which the vehicle responds to the speed difference
is so small that it can be neglected. To remove this drawback,
Chandler introduced a reactive delay time T. Based on the
rationale that the acceleration of the following car is also
influenced by its speed and the distance between the vehicles,
Gazis, Herman, and Rothery proposed the general type of
car-following model:

ẍn+1(t + T) = a[ẋn+1(t + T)]m[ẋn(t)− ẋn+1(t)]

[xn(t)− xn+1(t)]l
. (2)

Newell proposed the following model in which the
acceleration is propositional to an exponential function of
the distance between the vehicles, based on real data:

ẍn+1(t + T) = a1[ẋn(t)− ẋn+1(t)]× �−(a2/[xn(t)−xn+1(t)−a3]).
(3)

Although the above modifications have improved the real-
ity of car-following model, they have the following two
drawbacks. When the proceeding vehicle does not exist, this
implies that a car will maintain an initial speed. On the other
hand, when the speed difference is 0, the acceleration is 0.
This implies the unrealistic phenomenon that the following
car will not apply the brake even when the distance to the
preceding car approaches 0 and will not accelerate even
if the distance is very long. To solve the above-mentioned
problems, Treiber and Helbing introduced the intelligent
driver model [6], which introduces a desired speed and a
shortest distance between cars. The IDM is given as

v̇n = a

[
1−

(
vn
v0

)δ
−
(
s∗(vn,Δvn)

sn

)2
]

, (4)

s∗(v,Δv) = s0 + max
(
Tv +

vΔv

2
√
ab

, 0
)

, (5)

sn(t) = [xn−1 − xn − l], (6)

Δvn(t) = [vn(t)− vn−1(t)], (7)

where x is distance; n is the nth car; v is the speed; l
is the length of car; s0 is the desired minimum gap; a is
the maximum acceleration; s∗ is the effective gap; b is the
comfortable deceleration (a ≤ b); δ is the parameter; T is the
time gap; ν0 is the desired speed.

Figure 2 presents lane change behaviors. To simulate
driver’s behavior in the merging section on freeways and the
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Figure 2: Lane change behavior.

merging behavior in the weave section, and so forth, the lane
change model is needed [7]. We propose a new lane change
model which describes driver’s behavior depending on
judgment functions [8, 9]. We focus on a vehicle approaching
to a confluence point and describe its behavior with several
variables: the relative speed between the car and cars in
current lane, the locations of both the main line cars and
the on-ramp cars, driver’s judgment functions for changing
his lane, and driver’s desired speed. The driver’s judgment
function for the free merging is different from the judgment
function for the forced merging. A free merging implies that
a car on the ramp can merge into the main line without
influences, and cars on the main line are not interfered.
When forced merging models of psychological condition and
physical condition are both satisfied, the driver conducts lane
change behaviors. Otherwise, the driver continues the car-
following behavior without lane change behaviors.

Physical condition presents the ability of lane change.
The lane change model with driver’s judgment function is
expressed as follows:

h =
x f − xc − L +

(
v f − vc

)
t + (−A + B)t2

2

+ δ

(
v0 f − v f

)
v0 f

S + ζ
(v0c − vc)

v0c
S ≥ S ,

(8)

g = xc − xb − L + (vc − vb)t + (A− B)t2

2

− θ

(
vb0 − v f

)
vb0

S− ξ
(vc0 − vc)

vc0
S ≥ S,

(9)

0 ≤ A ≤ e, (10)

0 ≤ B ≤ d, (11)

where h, g are judgment function; x is the distance from
reference point; ν is the speed; L is the length of a vehicle;
t is the judgment time; ν0 is the desired speed, subject to
normal distribution; δ, ζ , θ, ξ (δ, ζ , θ, ξ ∈ [0, 1]) are the
adjustment coefficients; A is the rapid acceleration with
upper bound e; and B is the rapid deceleration with upper
bound d. Parameters A and B are associated with vehicle
c’s judgment functions for lane change and decide the free
merging or the forced merging. Since vehicle c judges to
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accelerate or decelerate to merge into the main line, two
events are mutually exclusive.

The function h judges whether vehicle c accelerates or
decelerates to merge according to the given space and speed
conditions between vehicles f and c. Similarly, the function g
is applied to judge in the relationship between vehicles c and
b. If both A and B take 0, the distance between two vehicles
f and b is large enough for vehicle c to be accommodated to
enter into the main line, then the free merging occurs (no
acceleration or deceleration behavior is required for vehicle
c). Conversely, in the case of the forced merging, we need to
examine whether the solution of inequality (8) to (11) exists.
If A and B are mutually exclusive, then the following two
conditions (1) and (2) are obtained.

(1) When a rapid brake event B does not exist, then B =
0, and only an event A could happen.

(2) When a rapid acceleration event A does not exist,
then A = 0, and only an event B is approved.

The lane changing behavior of vehicle c could happen
when a solution of (1) or (2) exists.

Psychological constraints describe driver’s motivations
on lane change. If the present car has not reached the desired
speed and if the predicted speed of lane change is greater
than that of no change, or gain speed advantage, a1 and a2

describe predicted acceleration of lane change and no lane
change, respectively. a1 and a2 are given from the IDM. Then
the psychological constraints can be given by

a1 < a2. (12)

If (12) has a solution, the driver has maneuvers of
changing the current lane to the target lane. Conversely, the
driver does not conduct the lane changing maneuvers.

Lane change behaviors can be characterized as a sequence
of three stages: the ability of lane change (physical condition);
the motivation of lane change (psychological constraints);
the execution of lane change. When lane change models
of psychological condition and physical condition are both
satisfied, the driver conducts the above-mentioned three
stages. Otherwise, the driver continues the car-following
behavior without lane change behaviors.

We develop a traffic flow simulation model consisting of
car-following model and lane change model [10–12]. The
basic concept of car-following theories is the relationship
between stimuli and response. In the classic car-following
theory, the stimuli are represented by the relative speed
of following and leading vehicle, and the response is
represented by the acceleration (or deceleration) rate of
the following vehicle. The car-following model describes
following behaviors that drivers follow each other in the
traffic stream on only one lane. To reproduce the traffic flow
in two or more lanes, lane change model which explores
lane change behaviors is needed. By using the car-following
model and lane change model, we express dynamic and com-
plex traffic behaviors in two or more lanes. Moreover, traffic
flow simulation models are applied to reproduce the traffic
congestion represented by Helbing and Kerner [13–16].

2.2. The Reinforcement Learning Ramp Metering. Reinforce-
ment learning is a kind of machine learning treating the
problem at which the agent under a certain environment
determines the action. And the action should observe
and take the present state. An agent gets reward from
environment by choosing actions. Reinforcement learning
learns a policy from which most reward is obtained through a
series of actions [17]. Reinforcement learning is a broad class
of optimal control methods depending on estimating value
functions from experience or simulations [18–21].

The model of reinforcement learning ramp metering
(RLRM) is shown in Figure 3. qin is the inflow of the
upstream of the main line; r is the metering rate; qout is the
outflow of the downstream of main line; dm is the density of
the main line in merging section; dr is the density of onramp;
vm is the average speed of the main line; vr is the average
speed of onramp.

q = qin + r − qout. (13)

According to the volume q in merging section, upstream
traffic qin is updated by

qint+1 ←− qint+1 + q, (14)

where qin called state variable can be collected by the control
variable detector. r is set as a choosing action variable.
Moreover, qout is the reward based on the choosing action.
ρL is the traffic density in the merging section of L long. ρL
can be obtained by

ρL = qint+1

L
. (15)

According to Figure 4, the framework of RLRM is
explained briefly. RLRM consists of metering rate choice
model, outflow function, value function, and environmental
model. The metering rate choice model is a rule to choose the
optimal metering rate. Outflow function describes the data
of downstream traffic which can be collected and calculated
by detectors. Value function presents the total of volumes
of downstream traffic. Environmental model predicts inflow
and outflow in the next period of time depending on optimal
metering rate and inflow.

2.3. RLRM with Complete Information. The RLRM with
complete information faces a Markov decision problem
(MDP). In addition, since inflow and metering rate’s set
denotes S, A(qin) (qint ∈ S) is finite. We typically use a set
of matrices

Rr
qinqin’ = Pr

{
qint+1 = qin′ | qint = qin, rt = r

}
(16)

to describe the transition structure. Traffic outflow at time t
is obtained by

Rr
qinqin’ = E

{
qoutt+1 | qint = qin, rt = r, qint+1 = qin′

}
,

(17)

for all qin ∈ S, for all r ∈ A(qin), and for all qin′ ∈ S+.
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If maximum outflow V∗ or Q∗ is given by Bellman for-
mula, we have

Vπ
(
qin
)
= max

r
E
{
qoutt+1 +λV∗

(
qint+1

)|qint=qin, rt=r
}

= max
r

∑
qin’

Pr
qin qin’

[
qoutrqin qin′+λV

π
(
qin′

)]
,

(18)

or

Q∗
(
qin, r

)
= E

{
qoutt+1 + λmax

r′
Q∗
(
qint+1, r′

) | qint

= qin, rt = r
}

=
∑
qin’

Pr
qin qin′

[
Rr
qin qin′+λmax

r′
Q∗
(
qin′, r′

)]
.

(19)

We can obtain transit probability Pr
qin qin′ and next out-

flow Vπ(qin) with MDP’s complete information. And we
assume that traffic outflow is finite. Moreover, we can also
compute traffic outflow.

2.4. RLRM without Complete Information. Supposed Markov
decision process with complete information is given in
Section 2.3. But this argument is untenable in fact. We can
give ramp metering rate by using evaluation of the experience
without complete information. Since transit probability is
not necessary, we can rewrite (18) as

Vπ
(
qint

) = Vπ
(
qint

)
+ at

[
qoutt −Vπ

(
qint

)]
, (20)

where qoutt is real time outflow at time t, and constant at
is transit probability function of t. Equation (19) can be
replaced by

Q
(
qint , rt

)←−Q(qint, rt
)

+at
[
qout+λE

{
Q
(
qint+1, rt+1 |st

)}
−Q(qint, rt

)]
.

(21)

If expected value of metering rate is not given, we also replace

qout + λE
{
Q
(
qint+1, rt+1st

)}−Q
(
qint, rt

)
(22)

by

qout + λ
∑
a

π
(
qint, rt

)
Q
(
qint+1, rt

)−Q
(
qint, rt

)
. (23)

We get

Q
(
qint , rt

)←− Q
(
qint , rt

)
+at

[
qout +λ

∑
a

π
(
qint, rt

)
Q
(
qint+1, rt

)−Q(qint, rt
)]

.

(24)

We suppose that the probability of on-ramp control
policy π can be obtained in (24). Here, it is difficult to satisfy
the initial condition. The values

∑
a π(qint, rt)Q(qint+1, rt)

associated with an optimal on-ramp control policy are
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called the optimal ramp inflow and are often written as
maxQ(qint+1, r). We get

Q
(
qint, rt

)←− Q
(
qint, rt

)
+ at

[
qout + λmaxQ

(
qint+1, r

)
−Q(qint , rt

)]
,

(25)

where

∞∑
t=1

at = ∞, (26)

∞∑
t=1

a2
t <∞. (27)

In the (25), the action value function Q is gained
by learning approximates Q∗ (the optimal action value
function) directly by using current policy. The state variable
can be updated depending on the policy.

When the traffic reaches the jam density, it is possible to
result in closure of the ramp for a long period of time, which
must be taken into consideration. Maximum of waiting
time (Tmax) and its metering rate (rT) are given. When∑m

n=1 TSn > Tmax, the control (qint, rT) is selected. In order
to remove the curse of dimensionality, the discrete equation
of the continuous variable rt is represented. The average
difference between 0 and rmax is divided by rn. rn is given by

Nr = cell
(
rmax

rn

)
, (28)

where Nr is the amount of the metering rate, and cell is the
function of the bottom integral function. The metering rate
is max(krn, rmax) for k ∈ N .

The algorithm of reinforcement learning on-ramp meter-
ing is shown in Figure 5.

(1) Initialize Q, qout, qin, and k.

(2) Determine cycle time of a traffic signal t.

(3) Update qint.

(4) Give metering rate by rt = k × rn.

(5) Determine the traffic state (qint, rt).

(6) Generate the density ρL by using traffic simulation
and choose the metering rate.

(7) If rt < rmax, then update k = k + 1 and go to (4), and
otherwise generate the optimal control (qint, r

∗).

(8) If one closes the ramp, then update waiting time T by
T = T + t, and otherwise initialize the waiting time T
by T = 0. If T > Tmax, then update metering rate by
rT → r∗.

(9) Operate the optimal control (qint , r
∗) and update Q.

When the cycle time t is over, determine to continue the
ramp metering. If yes, then collect the data of inflow qint+1,
go to (3), and update qint, that is, qint+1 → qint; otherwise,
complete the ramp metering.

Table 1: RLRM parameters.

Tmax (min) rT rmax rn Nr

5 200 1100 100 11

Table 2: Traffic inflow.

Case A B C D E F

Inflow of main line (pcu/hour) 1200 1500 1800 1800 2500 2500

Inflow of ramp (pcu/hour) 300 300 600 900 600 900

Total inflow 1500 1800 2400 2700 3100 3400

3. Data Combination and Reduction

Our aim is to design a reinforcement learning control
law for the ramp metering controller without complete
information. We need to control the inflow from the ramp
into main line, and the metering rate should be given
by traffic states. Traffic flow simulation is conducted to
demonstrate this control of the ramp metering. In our
simulation, we set the main line length on highways to
1000 m, ramp length to 200 m, and length in merging
sections of the main line and ramp to100 m. Parameters of
RLRM are shown in Table 1, and the metering rate matrix is
{0, 100, 200, 300, . . . . . . , 900, 1000, 1100}.

Table 2 shows the inflow of cases A, B, C, D, E, and F.
Inflow rate of the main line increases from 1200 pcu/hour of
case A to 2500 pcu/hour of case F. Moreover, inflow rate of
ramp rises from 300 pcu/hour of case A to 900 pcu/hour of
case F. The cycle length of the fixed-time control is 20 s which
consists of 15 s green time and 5s red time.

4. Result and Discussion

The results of no control, fixed-time control, and RLRM are
shown in Figures 6–9. Total inflow increases from 1500 pcu/h
in case A to 3400 pcu/h in case F. Figure 6 presents average
speed and its rate compared to no control. The average speed
of no control, about 108 km/h, is faster than fixedtime and
RLRM in case A. The similar results are shown in case B. The
average speed of no control, about 79 km/h, is faster than
fixedtime and is slower than RLRM in case C. The average
speed of no control, about 51 km/h, is slower than fixedtime
and RLRM in case F. According to the average speed, rates of
congestion reliefs of fixed-time control from case A to case
F arrive at −7.80%, −6.65%, −3.77%, 0. 26%, 2.70%, and
8.26%, respectively. In addition, rates of congestion reliefs
of RLRM from case A to case F arrive at −6.31%, −6.49%,
5.69%, 13.55%, 20.50%, and 18.18%, respectively.

Figure 7 describes density and its rate compared to no
control. Densities of fixed-time control and RLRM are about
38 pcu/km, an about 60% increase, in case A. Densities
of fixed-time control and RLRM are about 52 pcu/km and
45 pcu/km, about 11.46% and 22.60% decreases, in case
C. Densities of fixed-time control, no control, and RLRM
are about 120 pcu/km. According to densities, rates of
congestion reliefs of fixed-time control from case A to case F
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Figure 5: Algorithm of reinforcement learning ramp metering.

arrive at−57.55%,−19.92%,−11.46%,−21.35%, 7.6%, and
0.39%, respectively. In addition, rates of congestion reliefs of
RLRM from case A to case F arrive at −59.59%, −22.05%,
22.60%, 8.18%, 9.65%, and 3.42%, respectively.

Figure 8 shows outflow and its rate compared to no
control. Outflow rate rises from 1700 pcu/h without control
to 2308 pcu/h with fixed-time control and 1800 pcu/h with

RLRM in case A. Moreover, 3.82% and 7.85% increases are
shown depending on outflow rate in case C. In addition,
18.97% and 30.65% increases are explored depending on
outflow rate in case F. Rates of congestion reliefs of fixed-time
control from case A to case F arrive at 35.76%, −14.25%,
7.82%, 7.93%, 12.51%, and 18.97%, respectively. On the
other hand, rates of congestion reliefs of RLRM from case
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A to case F arrive at 7.06%, 0.58%, 3.85%, 10.47%, 54.63%,
and 30.65%, respectively.

Figure 9 represents travel time and its rate compared
to no control. According to travel time, 6.25% and 9.38%
increases are explored in case A. Travel time rises from 342 s
without control to 370 s with fixed-time control and falls into
330 s with RLRM in case C. Travel time falls from 617 s to
469 s with fixed-time control and 343 s with RLRM in case
F. Rates of congestion reliefs of fixed-time control from case
A to case F arrive at −6.25%, −25.26%, −8.19%, 7.36%,
27.06%, and 23.99%, respectively. On the other hand, rates
of congestion reliefs of RLRM from case A to case F arrive
at −9.38%, −5.26%, 3.51%, 38.17%, 40.32%, and 44.41%,
respectively.

According to Figures 6–9 when the traffic inflows are low,
controls not efficient. Controls get efficient with the traffic
inflows increasing. Controls are very efficient, and RLRM is
optimal control when the traffic inflows are high. Moreover,
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based on curves of Figures 7–9 assessment indicators of fixed-
time control fluctuate around indicators of no control. Fixed-
time control shows instability compared to RLRM. Abilities
of automaticity, memory, and performance feedback of
RLRM are also shown.

5. Conclusion

The on-ramp metering ensures that traffic moves at a speed
approximately equal to the optimum speed which results in
maximum flow rates or travel time. This study develops an
RLRM model without complete information, which consists
of prediction tools depending on traffic flow simulation
and optimal choice model based on reinforcement learning
theories. Numerical cases are given to demonstrate RLRM
compared to no control and fixed-time control. In addition,
densities and outflow rates are calculated. Moreover, average
speeds are computed, and travel times are assessed. Accord-
ing to cases A, B, C, D, E, and F, fixed-time control and RLRM
are discussed depending on average speeds, densities, outflow
rates, and travel times. When traffic inflow is low, controls
are not efficient, and there are little differences among no
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control, fixed-time control, and RLRM. On the other hand,
when traffic inflow is high, controls are very efficient, and
RLRM is optimal control. Moreover, the greater is inflow, the
more is the effect. In addition, the stability of RLRM is better
than fixed-time control.
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