89 research outputs found

    Hypermethylated gene ANKDD1A is a candidate tumor suppressor that interacts with FIH1 and decreases HIF1α stability to inhibit cell autophagy in the glioblastoma multiforme hypoxia microenvironment.

    Get PDF
    Ectopic epigenetic mechanisms play important roles in facilitating tumorigenesis. Here, we first demonstrated that ANKDD1A is a functional tumor suppressor gene, especially in the hypoxia microenvironment. ANKDD1A directly interacts with FIH1 and inhibits the transcriptional activity of HIF1α by upregulating FIH1. In addition, ANKDD1A decreases the half-life of HIF1α by upregulating FIH1, decreases glucose uptake and lactate production, inhibits glioblastoma multiforme (GBM) autophagy, and induces apoptosis in GBM cells under hypoxia. Moreover, ANKDD1A is highly frequently methylated in GBM. The tumor-specific methylation of ANKDD1A indicates that it could be used as a potential epigenetic biomarker as well as a possible therapeutic target

    Serum N‐glycans outperform CA19‐9 in diagnosis of extrahepatic cholangiocarcinoma

    Full text link
    Extensive efforts have been devoted to improve the diagnosis of extrahepatic cholangiocarcinoma (ECCA) due to its silent clinical character and lack of effective diagnostic biomarkers. Specific alterations in N‐glycosylation of glycoproteins are considered a key component in cancer progression, which can serve as a distinct molecular signature for cancer detection. This study aims to find potential serum N‐glycan markers for ECCA. In total, 255 serum samples from patients with ECCA (n = 106), benign bile tract disease (BBD, n = 60) and healthy controls (HC, n = 89) were recruited. Only 2 μL of serum from individual patients was used in this assay where the N‐glycome of serum glycoproteins was profiled by DNA sequencer‐assisted fluorophore‐assisted capillary electrophoresis (DSA‐FACE) technology. Multi‐parameter models were constructed by combining the N‐glycans and carbohydrate antigen 19‐9 (CA19‐9) which is currently used clinically. Quantitative analyses showed that among 13 N‐glycan structures, the bifucosylated triantennary N‐glycan (peak10, NA3F2) presented the best diagnostic performance for distinguishing ECCA from BBD and HC. Two diagnostic models (Glycotest1 and Glycotest2) performed better than single N‐glycan or CA19‐9. Additionally, two N‐glycan structures (peak9, NA3Fb; peak12, NA4Fb) were tightly related to lymph node metastasis in ECCA patients. In conclusion, sera of ECCA showed relatively specific N‐glycome profiling patterns. Serum N‐glycan markers and models are novel, valuable and noninvasive alternatives in ECCA diagnosis and progression monitoring.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/139072/1/elps6272.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139072/2/elps6272_am.pd

    The Vasculome of the Mouse Brain

    Get PDF
    The blood vessel is no longer viewed as passive plumbing for the brain. Increasingly, experimental and clinical findings suggest that cerebral endothelium may possess endocrine and paracrine properties – actively releasing signals into and receiving signals from the neuronal parenchyma. Hence, metabolically perturbed microvessels may contribute to central nervous system (CNS) injury and disease. Furthermore, cerebral endothelium can serve as sensors and integrators of CNS dysfunction, releasing measurable biomarkers into the circulating bloodstream. Here, we define and analyze the concept of a brain vasculome, i.e. a database of gene expression patterns in cerebral endothelium that can be linked to other databases and systems of CNS mediators and markers. Endothelial cells were purified from mouse brain, heart and kidney glomeruli. Total RNA were extracted and profiled on Affymetrix mouse 430 2.0 micro-arrays. Gene expression analysis confirmed that these brain, heart and glomerular preparations were not contaminated by brain cells (astrocytes, oligodendrocytes, or neurons), cardiomyocytes or kidney tubular cells respectively. Comparison of the vasculome between brain, heart and kidney glomeruli showed that endothelial gene expression patterns were highly organ-dependent. Analysis of the brain vasculome demonstrated that many functionally active networks were present, including cell adhesion, transporter activity, plasma membrane, leukocyte transmigration, Wnt signaling pathways and angiogenesis. Analysis of representative genome-wide-association-studies showed that genes linked with Alzheimer’s disease, Parkinson’s disease and stroke were detected in the brain vasculome. Finally, comparison of our mouse brain vasculome with representative plasma protein databases demonstrated significant overlap, suggesting that the vasculome may be an important source of circulating signals in blood. Perturbations in cerebral endothelial function may profoundly affect CNS homeostasis. Mapping and dissecting the vasculome of the brain in health and disease may provide a novel database for investigating disease mechanisms, assessing therapeutic targets and exploring new biomarkers for the CNS

    Neuroglobin-overexpression reduces traumatic brain lesion size in mice

    Get PDF
    Background: Accumulating evidence has demonstrated that over-expression of Neuroglobin (Ngb) is neuroprotective against hypoxic/ischemic brain injuries. In this study we tested the neuroprotective effects of Ngb over-expression against traumatic brain injury (TBI) in mice. Results: Both Ngb over-expression transgenic (Ngb-Tg) and wild-type (WT) control mice were subjected to TBI induced by a controlled cortical impact (CCI) device. TBI significantly increased Ngb expression in the brains of both WT and Ngb-Tg mice, but Ngb-Tg mice had significantly higher Ngb protein levels at the pre-injury baseline and post-TBI. Production of oxidative tissue damage biomarker 3NT in the brain was significantly reduced in Ngb-Tg mice compared to WT controls at 6 hours after TBI. The traumatic brain lesion volume was significantly reduced in Ngb Tg mice compared to WT mice at 3 weeks after TBI; however, there were no significant differences in the recovery of sensorimotor and spatial memory functional deficits between Ngb-Tg and WT control mice for up to 3 weeks after TBI. Conclusion: Ngb over-expression reduced traumatic lesion volume, which might partially be achieved by decreasing oxidative stress

    Self-Propelled Swimming of a Flexible Propulsor Actuated by a Distributed Active Moment

    No full text
    The self-propelled swimming of a flexible propulsor is numerically investigated by using fluid-structure interaction simulations. A distributed active moment mimicking the muscle actuation in fish is used to drive the self-propulsion. The active moment imposed on the body of the swimmer takes the form of a traveling wave. The influences of some key parameters, such as the wavenumber, the amplitude of moment density and the Reynolds number, on the performance of straight-line swimming are explored. The influence of the ground effect on speed and efficiency is investigated through the simulation of near-wall swimming. The turning maneuver is also successfully performed by adopting a simple evolution law for the leading-edge deflection angle. The results of the present study are expected to be helpful to the design of bio-inspired autonomous underwater vehicles
    corecore