149 research outputs found

    Thermostability enhancement of Escherichia coli phytase by error-prone polymerase chain reaction (epPCR) and site-directed mutagenesis

    Get PDF
    Phytase efficiently hydrolyzes phytate to phosphate; thus, it is widely used to increase phosphorus availability in animal feeds and reduce phosphorus pollution through excretion. Phytase is easily inactivated during feed pelleting at high temperature, and sufficient thermostability of phytase is essential for industrial applications. In this study, directed evolution was performed to enhance phytase thermostability. Variants were initially expressed in Escherichia coli BL21 for screening, then in Pichia pastoris for characterization. Over 19,000 clones were generated from an error-prone Polymerase Chain Reaction (epPCR) library; 5 mutants (G10, D7, E3, F8, and F9) were obtained with approximately 9.6%, 10.6%, 11.5%, 11.6%, and 12.2% higher residual activities than the parent after treatment at 99°C for 60 min. Three of these mutants, D7, E3, and F8, exhibited 79.8%, 73.2%, and 92.6% increases in catalytic efficiency (kcat/Km), respectively. In addition, the specific activities of D7, E3, and F8 were 2.33-, 1.98-, and 2.02-fold higher than parental phytase; they were also higher than the activities of all known thermostable phytases. Sequence analysis revealed that all mutants were substituted at residue 75 and was confirmed that the substitution of cysteine at position 75 was the main contribution to the improvement of thermostability of mutants by saturation mutagenesis, indicating that this amino acid is crucial for the stability and catalytic efficiency of phytase. Docking structure analysis revealed that substitution of the C75 residue allowed the mutants to form additional hydrogen bonds in the active pocket, thereby facilitating binding to the substrate. In addition, we confirmed that the intrinsic C77-C108 disulfide bond in E. coli phytase is detrimental to its stability

    ToViLaG: Your Visual-Language Generative Model is Also An Evildoer

    Full text link
    Warning: this paper includes model outputs showing offensive content. Recent large-scale Visual-Language Generative Models (VLGMs) have achieved unprecedented improvement in multimodal image/text generation. However, these models might also generate toxic content, e.g., offensive text and pornography images, raising significant ethical risks. Despite exhaustive studies on toxic degeneration of language models, this problem remains largely unexplored within the context of visual-language generation. This work delves into the propensity for toxicity generation and susceptibility to toxic data across various VLGMs. For this purpose, we built ToViLaG, a dataset comprising 32K co-toxic/mono-toxic text-image pairs and 1K innocuous but evocative text that tends to stimulate toxicity. Furthermore, we propose WInToRe, a novel toxicity metric tailored to visual-language generation, which theoretically reflects different aspects of toxicity considering both input and output. On such a basis, we benchmarked the toxicity of a diverse spectrum of VLGMs and discovered that some models do more evil than expected while some are more vulnerable to infection, underscoring the necessity of VLGMs detoxification. Therefore, we develop an innovative bottleneck-based detoxification method. Our method could reduce toxicity while maintaining comparable generation quality, providing a promising initial solution to this line of research.Comment: Accepted by EMNLP 2023 (Main Conference), Oral Presentatio

    The Effect of Superparamagnetic Iron Oxide Nanoparticle Surface Charge on Antigen Cross-Presentation.

    Get PDF
    Magnetic nanoparticles (NPs) of superparamagnetic iron oxide (SPIO) have been explored for different kinds of applications in biomedicine, mechanics, and information. Here, we explored the synthetic SPIO NPs as an adjuvant on antigen cross-presentation ability by enhancing the intracellular delivery of antigens into antigen presenting cells (APCs). Particles with different chemical modifications and surface charges were used to study the mechanism of action of antigen delivery. Specifically, two types of magnetic NPs, γF

    CARDIOPROTECTIVE ROLES OF THE CHINESE MEDICINAL FORMULA BAO-XIN-TANG ON ACUTE MYOCARDIAL INFARCTION IN RATS

    Get PDF
    Background: Bao-Xin-Tang (BXT) is a traditional Chinese medicinal formula used for the treatment of coronary heart disease and known to have favorable therapeutic benefits. The current study was designed to determine whether BXT has a cardioprotective role for acute myocardial infarction. The underlying mechanisms were also explored. Materials and Methods: The Sprague-Dawley rat model of acute myocardial infarction was established by occluding the left anterior descending branch of the coronary artery. After a 3-h ischemic period, we determined the myocardial infarction size, inflammatory components, and antioxidant activities. Results: The data showed that BXT could reduce the infarction size and lower the levels of C-reactive protein, interleukin-6, and myeloperoxidase, and increase the activities of superoxide dismutase and the anti-inflammatory cytokine, interleukin-10. These results indicate that administration of BXT, following acute myocardial infarction, could reduce infarct size. Conclusion: The effects of BXT may be related to its anti-inflammatory and anti-oxidative properties

    Mechanically Robust and Spectrally Selective Convection Shield for Daytime Subambient Radiative Cooling

    Get PDF
    As a passive cooling strategy, radiative cooling is becoming anappealing approach to dissipate heat from terrestrial emitters to the outer space. However, the currently achieved cooling performance is still underperforming due to considerable solar radiation absorbed by the emitter and nonradiative heat transferred from the surroundings. Here, we proposed a mechanically robust and spectrally selective convection shield composed of nanoporous composite fabric (NCF) to achieve daytime subambient radiative cooling. By selectively reflecting ∼95% solar radiation, transmitting ∼84% thermal radiation, and suppressing the nonradiative heat transferred from warmer surroundings, the NCF-based radiative cooler demonstrated an average daytime temperature reduction of ∼4.9 °C below the ambient temperature, resulting in an average net radiative cooling power of ∼48 W/m2 over a 24 h measurement. In addition, we also modeled the potential cooling capacity of the NCF-based radiative cooler and demonstrated that it can cover the cooling demands of energy-efficient residential buildings in most regions of China. Excellent spectral selectivity, mechanical strength, and weatherability of the NCF cover enable a much broader selection for the emitters, which is promising in the real-world deployment of direct daytime subambient radiative cooling

    Identification of mutations in porcine STAT5A that contributes to the transcription of CISH

    Get PDF
    Identification of causative genes or genetic variants associated with phenotype traits benefits the genetic improvement of animals. CISH plays a role in immunity and growth, however, the upstream transcriptional factors of porcine CISH and the genetic variations in these factors remain unclear. In this study, we firstly identified the minimal core promoter of porcine CISH and confirmed the existence of STATx binding sites. Overexpression and RT-qPCR demonstrated STAT5A increased CISH transcriptional activity (P < 0.01) and mRNA expression (P < 0.01), while GATA1 inhibited CISH transcriptional activity (P < 0.01) and the following mRNA expression (P < 0.05 or P < 0.01). Then, the putative functional genetic variations of porcine STAT5A were screened and a PCR-SSCP was established for genotype g.508A>C and g.566C>T. Population genetic analysis showed the A allele frequency of g.508A>C and C allele frequency of g.566C>T was 0.61 and 0.94 in Min pigs, respectively, while these two alleles were fixed in the Landrace population. Statistical analysis showed that Min piglets with CC genotype at g.566C>T or Hap1: AC had higher 28-day body weight, 35-day body weight, and ADG than TC or Hap3: CT animals (P < 0.05, P < 0.05). Further luciferase activity assay demonstrated that the activity of g.508A>C in the C allele was lower than the A allele (P < 0.05). Collectively, the present study demonstrated that STAT5A positively regulated porcine CISH transcription, and SNP g.566C>T in the STAT5A was associated with the Min piglet growth trait

    A Novel Systems Pharmacology Method to Investigate Molecular Mechanisms of Scutellaria barbata D. Don for Non-small Cell Lung Cancer

    Get PDF
    Non-small cell lung cancer (NSCLC) is the most ordinary type of lung cancer which leads to 1/3 of all cancer deaths. At present, cytotoxic chemotherapy, surgical resection, radiation, and photodynamic therapy are the main strategies for NSCLC treatment. However, NSCLC is relatively resistant to the above therapeutic strategies, resulting in a rather low (20%) 5-year survival rate. Therefore, there is imperative to identify or develop efficient lead compounds for the treatment of NSCLC. Here, we report that the herb Scutellaria barbata D. Don (SBD) can effectively treat NSCLC by anti-inflammatory, promoting apoptosis, cell cycle arrest, and angiogenesis. In this work, we analyze the molecular mechanism of SBD for NSCLC treatment by applying the systems pharmacology strategy. This method combines pharmacokinetics analysis with pharmacodynamics evaluation to screen out the active compounds, predict the targets and assess the networks and pathways. Results show that 33 compounds were identified with potential anti-cancer effects. Utilizing these active compounds as probes, we predicted that 145 NSCLC related targets mainly involved four aspects: apoptosis, inflammation, cell cycle, and angiogenesis. And in vitro experiments were managed to evaluate the reliability of some vital active compounds and targets. Overall, a complete overview of the integrated systems pharmacology method provides a precise probe to elucidate the molecular mechanisms of SBD for NSCLC. Moreover, baicalein from SBD effectively inhibited tumor growth in an LLC tumor-bearing mice models, demonstrating the anti-tumor effects of SBD. Our findings further provided experimental evidence for the application in the treatment of NSCLC
    • …
    corecore