19 research outputs found

    Study on the Distribution Pattern of PAHs in the Coking Dust from the Coking Environment

    Get PDF
    AbstractThis paper conducts a study and analyzes five kinds of dust samples of different environment, including an office area,a ground station of the new plant, the first workshop of coking, a top of coke oven and a ground station of the old plant in coking plant and obtaines the distribution pattern of PAHs in the coking dust by the way of ultrasonic extraction and high performance liquid chromatography. The data show that PAHs from the first workshop turns out to be the richest with its content getting up to 12.00μgám-3. By analyzing the single component distribution of PAHs, the results show that there are fourteen kinds of PAHs produced at 5 sites. Through analyzing the particle size of coking dust, its size is mainly below 10μm and its contents exceeds to 75%. The first workshop environment is the highest and reaching 98.39%

    SPI1-induced downregulation of FTO promotes GBM progression by regulating pri-miR-10a processing in an m6A-dependent manner

    Get PDF
    As one of the most common post-transcriptional modifications of mRNAs and noncoding RNAs, N6-methyladenosine (m6A) modification regulates almost every aspect of RNA metabolism. Evidence indicates that dysregulation of m6A modification and associated proteins contributes to glioblastoma (GBM) progression. However, the function of fat mass and obesity-associated protein (FTO), an m6A demethylase, has not been systematically and comprehensively explored in GBM. Here, we found that decreased FTO expression in clinical specimens correlated with higher glioma grades and poorer clinical outcomes. Functionally, FTO inhibited growth and invasion in GBM cells in vitro and in vivo. Mechanistically, FTO regulated the m6A modification of primary microRNA-10a (pri-miR-10a), which could be recognized by reader HNRNPA2B1, recruiting the microRNA microprocessor complex protein DGCR8 and mediating pri-miR-10a processing. Furthermore, the transcriptional activity of FTO was inhibited by the transcription factor SPI1, which could be specifically disrupted by the SPI1 inhibitor DB2313. Treatment with this inhibitor restored endogenous FTO expression and decreased GBM tumor burden, suggesting that FTO may serve as a novel prognostic indicator and therapeutic molecular target of GBM.publishedVersio

    Micromechanical behaviors related to confined deformation in pure titanium

    Get PDF
    Confined deformation, e.g. mechanical twinning, shear banding, and Lüders banding, etc. was extensively observed in metals and alloys with low stacking-fault energies, especially under complex loadings, governing the mechanical properties. It is often accompanied with gradient microstructures to accommodate the stress concentrations. Understanding the micromechanical behaviors of structural materials having confined deformation is important for evaluating the structural stabilities of engineering components. Synchrotron-based techniques provide powerful tools for multiscale microstructural characterization owing to their good resolution in real/reciprocal space, fast data collection/processing and flexible application scenarios. In this paper, the synchrotron-based high-energy X-ray diffraction (HE-XRD) and microdiffraction (μXRD) techniques in combination with traditional characterization methods are used to reveal the deformational gradient structures/stresses under different loading modes in multiscale. The structure/stress gradients induced by laser shot peening treatment and the deformation twins generated during uniaxial tensile loading in pure titanium were systematically studied by HE-XRD and μXRD, in order to elucidate the accommodating role of the deformational structures subjected to various confined scenarios. The new finding regarding the micromechanical behaviors related to confined deformation contributes to the in-depth understanding of related complex deformation behaviors

    Insights into the genetic and host adaptability of emerging porcine circovirus 3

    No full text
    Porcine circovirus 3 (PCV3) was found to be associated with reproductive disease in pigs, and since its first identification in the United States, it subsequently spread worldwide, especially in China, where it might pose a potential threat to the porcine industry. However, no exhaustive analysis was performed to understand its evolution in the prospect of codon usage pattern. Here, we performed a deep codon usage analysis of PCV3. PCV3 sequences were classified into two clades: PCV3a and PCV3b, confirmed by principal component analysis. Additionally, the degree of codon usage bias of PCV3 was slightly low as inferred from the analysis of the effective number of codons. The codon usage pattern was mainly affected by natural selection, but there was a co-effect of mutation pressure and dinucleotide frequency. Moreover, based on similarity index analysis, codon adaptation index analysis and relative codon deoptimization index analysis, we found that PCV3 might pose a potential risk to public health though with unknow pathogenicity. In conclusion, this work reinforces the systematic understanding of the evolution of PCV3, which was reflected by the codon usage patterns and fitness of this novel emergent virus

    Finite Element Analysis of Large Plastic Deformation Process of Pure Molybdenum Plate during Hot Rolling

    No full text
    The rare molybdenum resources are being increasingly used in heavy industries. In this study, the common unidirectional and cross hot rolling operations, for pure molybdenum plates, were numerically simulated by using MSC. Marc software. An elastic–plastic finite element model was employed, together with the updated Lagrange method, to predict stress and strain fields in the workpiece. The results showed that there was a typical three-dimensional additional compressive stress (σy> σz > σx) in the deformation zone, while strain could be divided into uniaxial compressive strain and biaxial tensile strain (εy > εx > εz). Tensile stress σx increased with the accumulation of reduction and the decrease in friction coefficient at the edge of the width spread. More importantly, the interlaced deformation caused by cross-commutations, which were helpful in repairing the severe anisotropy created by unidirectional hot rolling. The evolution of the temperature field of pure molybdenum plate was investigated. The surface quenching depth of the pure molybdenum plate was about 1/6 H under different initial temperatures and reductions. In addition, the fundamental reason for the nonuniform distribution of stress and strain fields was the joint influence of rolling stress, contact friction, and external resistance. By comparing the theoretical simulation value of the model with the experimental verification data, we found that the model was aligning well with the actual engineering

    Genomic Epidemiology, Evolution, and Transmission Dynamics of Porcine Deltacoronavirus

    No full text
    The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown once again that coronavirus (CoV) in animals are potential sources for epidemics in humans. Porcine deltacoronavirus (PDCoV) is an emerging enteropathogen of swine with a worldwide distribution. Here, we implemented and described an approach to analyze the epidemiology of PDCoV following its emergence in the pig population. We performed an integrated analysis of full genome sequence data from 21 newly sequenced viruses, along with comprehensive epidemiological surveillance data collected globally over the last 15 years. We found four distinct phylogenetic lineages of PDCoV, which differ in their geographic circulation patterns. Interestingly, we identified more frequent intra- and interlineage recombination and higher virus genetic diversity in the Chinese lineages compared with the USA lineage where pigs are raised in different farming systems and ecological environments. Most recombination breakpoints are located in the ORF1ab gene rather than in genes encoding structural proteins. We also identified five amino acids under positive selection in the spike protein suggesting a role for adaptive evolution. According to structural mapping, three positively selected sites are located in the N-terminal domain of the S1 subunit, which is the most likely involved in binding to a carbohydrate receptor, whereas the other two are located in or near the fusion peptide of the S2 subunit and thus might affect membrane fusion. Finally, our phylogeographic investigations highlighted notable South-North transmission as well as frequent long-distance dispersal events in China that could implicate human-mediated transmission. Our findings provide new insights into the evolution and dispersal of PDCoV that contribute to our understanding of the critical factors involved in CoVs emergence.status: publishe
    corecore