24 research outputs found

    Atmospheric pollution and human health in a Chinese megacity (APHH-Beijing) programme. Final report

    Get PDF
    In 2016, over 150 UK and Chinese scientists joined forces to understand the causes and impacts - emission sources, atmospheric processes and health effects - of air pollution in Beijing, with the ultimate aim of informing air pollution solutions and thus improving public health. The Atmospheric Pollution and Human Health in a Chinese Megacity (APHH-Beijing) research programme succeeded in delivering its objectives and significant additional science, through a large-scale, coordinated multidisciplinary collaboration. In this report are highlighted some of the research outcomes that have potential implications for policymaking

    Modeling of a Single-Notch Microfiber Coupler for High-Sensitivity and Low Detection-Limit Refractive Index Sensing

    No full text
    A highly sensitive refractive index sensor with low detection limit based on an asymmetric optical microfiber coupler is proposed. It is composed of a silica optical microfiber and an As2Se3 optical microfiber. Due to the asymmetry of the microfiber materials, a single-notch transmission spectrum is demonstrated by the large refractive index difference between the two optical microfibers. Compared with the symmetric coupler, the bandwidth of the asymmetric structure is over one order of magnitude narrower than that of the former. Therefore, the asymmetric optical microfiber coupler based sensor can reach over one order of magnitude smaller detection limit, which is defined as the minimal detectable refractive index change caused by the surrounding analyte. With the advantage of large evanescent field, the results also show that a sensitivity of up to 3212 nm per refractive index unit with a bandwidth of 12 nm is achieved with the asymmetric optical microfiber coupler. Furthermore, a maximum sensitivity of 4549 nm per refractive index unit can be reached while the radii of the silica optical microfiber and As2Se3 optical microfiber are 0.5 μm and a 0.128 μm, respectively. This sensor component may have important potential for low detection-limit physical and biochemical sensing applications

    Detection of Lower Body for AGV Based on SSD Algorithm with ResNet

    No full text
    Detection of human lower body provides an implementation idea for the automatic tracking and accurate relocation of automatic vehicles. Based on traditional SSD and ResNet, this paper proposes an improved detection algorithm R-SSD for human lower body detection, which utilizes ResNet50 instead of VGG16 to improve the feature extraction level of the model. According to the application of acquisition equipment, the model input resolution is increased to 448 × 448 and the model detection range is expanded. Six feature maps of the updated resolution network are selected for detection and the lower body image dataset is clustered into five categories for aspect ratio, which are evenly distributed to each feature detection map. The experimental results show that the model R-SSD detection accuracy after training reaches 85.1% mAP. Compared with the original SSD, the detection accuracy is improved by 7% mAP. The detection confidence in practical application reaches more than 99%, which lays the foundation for subsequent tracking and relocation for automatic vehicles

    The short term burden of ambient fine particulate matter on chronic obstructive pulmonary disease in Ningbo, China

    No full text
    Abstract Background Numerous studies have found associations between ambient fine particulate matter (PM2.5) and increased mortality risk. However, little evidence is available on associations between PM2.5 and years of life lost (YLL). We aimed to estimate the YLL due to chronic obstructive pulmonary disease (COPD) mortality related to ambient PM2.5 exposure. Methods A time-series study was conducted based on the data on air pollutants, meteorological conditions and 18,472 registered COPD deaths in Ningbo, China, 2011–2015. The effects of PM2.5 on YLL and daily death of COPD were estimated, after controlling long term trend, meteorological index and other confounders. Results The impact of PM2.5 on YLL due to COPD lasted for 5 days (lag 0–4). Per 10 μg/m3 increase in PM2.5 was associated with 0.91 (95%CI: 0.16, 1.66) years increase in YLL. The excess YLL of COPD mortality were 8206 years, and 0.38 day per person in Ningbo from 2011 to 2015. The exposure-response curve of PM2.5 and YLL due to COPD showed a non-linear pattern, with relatively steep at low levels and flattened out at higher exposures.. Furthermore, the effects were significantly higher in the elderly than those in the younger. Conclusions Our findings explored burden of PM2.5 on YLL due to COPD and highlight the importance and urgency of ambient PM2.5 pollution control and protection of the vulnerable populations
    corecore