
RESEARCH Open Access

Characterization of genome-wide H3K27ac
profiles reveals a distinct PM2.5-associated
histone modification signature
Cong Liu1, Junhui Xu2, Yahong Chen3, Xinbiao Guo2, Yinan Zheng4, Qianfei Wang9, Yiyong Chen2, Yang Ni2,
Yidan Zhu2, Brian Thomas Joyce5,6, Andrea Baccarelli7†, Furong Deng2*†, Wei Zhang5,8† and Lifang Hou5,8*†

Abstract

Background: Current studies of environmental health suggest a link between air pollution components, such as
particulate matter (PM), and various diseases. However, the specific genes and regulatory mechanisms implicated in
PM-induced diseases remain largely unknown. Epigenetic systems such as covalent modification of histones in
chromatin may mediate environmental factors in gene regulation. Investigating the relationships between PM
exposure and histone modification status may help understand the mechanisms underlying environment-associated
health conditions.

Methods: In this study, we obtained genome-wide profiles of H3K27ac (histone 3 lysine 27 acetylation), known to be
an active gene regulatory histone modification marker, in blood samples collected from four Chinese individuals
exposed to high or low PM2.5 (particles with diameters up to 2.5 μm).

Results: The genome-wide chromatin immunoprecipitation sequencing (ChIP-Seq) data indicated a comprehensive
differential H3K27ac landscape across the individual genomes, which was associated with high PM2.5. Moreover, a
substantial number of these PM2.5-associated differential H3K27ac markers were in genes involved in immune cell
activation, potentially linking these epigenetic changes with air pollution-induced immune and inflammatory responses.

Conclusions: Our study provides the first genome-wide characterization of H3K27ac profiles in individuals subjected to
different exposure levels of PM2.5. Future systematic investigations of the relationships between air pollutants and
histone modifications in large population samples are warranted to elucidate the contributions of histone modifications
to environment-associated diseases.
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Background
Air pollutants have been demonstrated to exert significant
adverse health effects in populations around the world.
Particulate matter (PM), which represents a mixture of
solid particles and liquid droplets found in the air, in
particular has been associated with increased morbidity
and mortality from various diseases [1–5]. Gene dysregu-
lation plays a fundamental role in disease pathogenesis

and development. Thus investigating gene dysregulation
mechanisms related to PM exposure may enhance our
knowledge of air pollution-related health conditions, pro-
viding important information for disease prevention, diag-
nosis and treatment.
Covalent histone modifications, such as methylation and

acetylation of certain amino acid residues in chromatin his-
tones, have been shown to play an essential role in gene
regulatory function by modulating chromatin structures.
For example, the Encyclopedia of DNA Elements (EN-
CODE) Project [6] has systematically identified histone
modification markers with distinct gene regulatory roles in
the human genome (e.g., activation by H3K4me3 - histone
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3 lysine 4 tri-methylation; repression by H3K9me3 - histone
3 lysine 9 tri-methylation) [7].
Furthermore, epigenetic changes including histone modi-

fications are increasingly being linked with gene dysregula-
tion and cellular responses induced by air pollutants,
including ambient PM [8]. PM exposure was found to pro-
mote the release of inflammatory cytokines, which is
further enhanced by co-treatment with a histone deacety-
lase inhibitor [9], indicating that differential histone acetyl-
ation could be involved in PM-mediated pro-inflammatory
responses. Some reports also indicated that PM-containing
environmental contaminants (e.g., nickel, chromium) con-
tribute to dysregulated histone acetylation [10, 11]. Since
there are different types of histone modifications, the ultim-
ate effects of histone modifications related to air pollutant
exposure remain unclear, and likely depend upon the exact
composition of the PM. In addition, genome-wide histone
modification patterns induced by air pollution has yet to be
characterized. Therefore, in this study, our objective was to
characterize the modification patterns of H3K27ac (histone
3 lysine 27 acetylation) associated with PM2.5 (particles with
diameters up to 2.5 μm). H3K27ac has been identified as an
active regulatory histone modification marker with a puta-
tive role in separating active enhancers from their poised
counterparts [12]. Specifically, we used the unbiased,
genome-wide Chromatin Immunoprecipitation Sequencing
(ChIP-Seq) to profile H3K27ac markers across the genomes
of individuals with varying PM2.5 exposure levels. Individual
histone modification profiles were compared between the
exposure groups to provide an overall landscape of differen-
tial H3K27ac markers associated with high PM2.5 exposure.
Genes that may be regulated by these PM2.5-associated his-
tone markers were then evaluated for their potential
functions and impacts on human complex diseases/traits,
by taking advantage of publicly available functional annota-
tion databases and genome-wide association study (GWAS)
results.

Methods
Study subjects, sample preparation, and ChIP-Seq assay
Four healthy subjects were assigned into low or high expos-
ure groups according to measurements of outdoor PM2.5

levels (Table 1). All study participants are Han Chinese
who worked and lived in the Beijing metropolitan area.
This study was approved and exempted by the Institutional

Review Board of each collaborating institution with written
informed consent obtained from all subjects.
Nuclei from polymorphonuclear leukocytes of subjects

were extracted using PolymorphPrep™ (Axis-Shield, Dundee,
UK). These extracted nuclei were then lysed and sonicated
to produce sheared chromatin 200-600 bp long. The quality
of the sheared chromatin, and sonication efficiency, were
checked according to standard molecular biology proto-
cols. The ChIP-Seq assay was then used to profile the
modification levels of H3K27ac in each individual’s ge-
nomes. Briefly, the final soluble chromatin was prebound
with an H3K27ac antibody (Abcam, Cambridge, UK;
#ab4729). Whole-cell extract (WCE) samples untreated
with the antibody (i.e., the input samples) were retained as
controls. The immunoprecipitated chromatin was washed,
purified and eluted. The crosslinks were then reversed.
The purified DNA were prepared for sequencing using
the ChIP-Seq kit according to the manufacturer’s protocol
(Illumina, Inc., San Diego, CA). Sequencing was per-
formed using the Illumine HiSeq2000 platform (Illumina,
Inc., San Diego, CA). The raw ChIP-Seq data have been
deposited into the NCBI Sequence Read Archive (Acces-
sion Number: SRP057970).

ChIP-Seq data processing and characterization
Histone modification peaks were identified from the raw
ChIP-Seq data using the next-generation sequencing
analysis tools provided in the Galaxy Project [13]. Low
quality reads as more than 10 % of bases with quality
scores less than 20 were filtered. The cleaned 101 bp
single-end sequencing reads were mapped to the human
genome reference (hg19) using Bowtie2 [14]. Only non-
redundant and uniquely mapped reads were retained to
correct for sequencing bias. To define the H3K27ac
enriched genomic regions (peaks), the model-based algo-
rithm MACS [15] was used to compare the ChIP-Seq
signal to its corresponding input sample. Peaks with
overlaps in different individuals were merged into a
broad peak domain using BEDTools [16]. Differential
H3K27ac loci were defined as broad peaks detected in
one group that were missing in another group.
To characterize the general distribution of H3K27ac

profiles in these individuals, aggregate H3K27ac profiles
were generated using an in-house script. The human
RefSeq [17] transcription start site (TSS) annotations
and the ENCODE ChromHMM-detected enhancers de-
rived for the lymphoblastoid cell line GM12878 [18]
were downloaded from the UCSC Genome Browser
(https://genome.ucsc.edu/). A window of +/− 10 kb from
each TSS or center of each enhancer was split into 400
bins (50 bp/bin). For each bin, the normalized reads
density was calculated as a log ratio of the average reads
density for the ChIP sample to its corresponding input

Table 1 Study subjects

Subject ID Exposure
group

Outdoor PM2.5

(μg/m3)
Indoor PM2.5

(μg/m3)

1 low 7 15

2 low 9 17

3 high 22 105

4 high 52 131
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sample, thus generating a genome-wide H3K27ac inten-
sity profile for either promoters or enhancers.

Functional annotation analyses
Functions of differential H3K27ac loci were predicted by
analyzing the annotations of nearby genes using the
Genomic Regions Enrichment of Annotations Tool
(GREAT) [19]. In particular, each gene was assigned a
basal regulatory domain from 5 kb upstream to 1 kb
downstream of the TSS. The gene regulatory domain
was extended in both directions to the next nearest
gene's basal domain but no more than 100 kb in one dir-
ection. Each differential H3K27ac locus was associated
with all genes whose regulatory domain it overlapped.
Significantly enriched Gene Ontology (GO) [20] bio-
logical processes and PANTHER pathways [21] were
identified under 5 % false discovery rate (FDR) using a
hypergeometric test. To evaluate PM2.5-associated epi-
genetic effects on human complex diseases/traits, differen-
tial H3K27ac loci were overlapped with trait-associated
genetic variants, i.e., single nucleotide polymorphisms
(SNPs) from the NHGRI GWAS Catalogue [22], which
contains over 1700 curated publications of more than
12000 SNPs (Catalog Data: February 20, 2015). Significant
GWAS SNP-trait associations were limited to those with
nominal p-values smaller than 1.0 × 10−5, as reported by
the GWAS Catalogue.

Results
Figure 1 shows the general workflow of this study. Briefly,
four individuals subjected to different PM2.5 exposure
levels were profiled for genome-wide H3K27ac profiles
using ChIP-Seq. A standard ChIP-Seq data analysis pipe-
line was performed to identify differential histone modifi-
cation loci between the two exposure groups.
For each individual, both ChIP and input samples were

sequenced. After conventional quality control, around
2–9 million unique reads were mapped to the reference
genome (hg19) in the ChIP samples, in contrast to the
4–12 million reads in the input samples (Additional file 1:
Table S1). In total, 7000 ~ 54000 peaks were called using a
stringent peak detection threshold p-value of p < 10−5

(Additional file 2: Table S2). Among differentially modified
H3K27ac loci, 1080 loci were induced in the group with
high PM2.5 exposure, and 158 loci were suppressed
(Additional file 3: Table S3). In general, individuals with
higher PM2.5 tended to have a higher number of peaks.
In addition, a similar global pattern was observed from
aggregation plots of H3K27ac on promoter and enhan-
cer regions (Fig. 2). H3K27ac peaks were clearly over-
lapped in promoter and enhancer regions, consistent
with the putative role of H3K27ac as a promoter and
enhancer marker. Both the TSS and enhancer peaks
were higher in the individuals with high PM2.5 exposure
compared to low-exposed individuals. These findings

Fig. 1 Overview of the study design and analysis workflow. Nuclei were extracted from blood samples of four individuals under low or high exposure
of outdoor PM2.5. Standard protocol was used for ChIP-Seq experiments. Bioinformatics software (in brackets) and in-house scripts were used to analyze
the sequencing data. The functions of differential H3K27ac loci were evaluated using public databases. ChIP: chromatin immunoprecipitation; IP:
immunoprecipitation; GO: gene ontology
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could indicate global enhancement of gene expression
due to the exposure to PM2.5 pollutants.
Gene set enrichment analysis was performed to evalu-

ate the genes annotated by the identified differential
H3K27ac loci using the GREAT tools. Additional file 4:
Table S4 shows significantly enriched GO biological pro-
cesses and PANTHER pathways. We found that most of
the associated genes were involved in the activation of
cellular responses to wounding and stimulus, suggesting
an enhancer-mediated cell activation mechanism in re-
sponse to higher PM2.5 exposure. We also found differ-
ential H3K27ac loci were most significantly enriched in
pathways related to immune response, including T-cell
and B-cell activation (Fig. 3). Interestingly, we found
that a pathway related to Alzheimer’s disease was
enriched in our results.
A previous study showed that complex trait-associated

variants were enriched in specific histone marks [23].

We also found 11 complex trait-associated genetic vari-
ants overlapping with our identified PM2.5-associated
epigenetic signature (Table 2). Diseases such as Alzhei-
mer’s disease and inflammatory bowel disease (IBD)
were found to have overlapping GWAS-identified loci
with our PM2.5-associated H3K27ac markers.

Discussion
Accumulating evidence has demonstrated that PM is able
to induce systemic inflammatory responses by altering the
expression of specific genes [24–28]. For example, Ovrevik,
et al. [26] found that particulate air pollution up-regulated
inflammation-related chemokines and cytokines in a bron-
chial epithelial cell line. In a paired sampling study design,
Wang, et al. [25] showed that levels of systemic inflamma-
tory responses were significantly increased in the peripheral
blood of a population exposed to PM2.5. Our observation
of PM2.5-associated epigenetic change is consistent with

Fig. 2 Global profiles of H3K27ac overlapped with promoters and enhancers. Global H3K27ac signal densities normalized by input were
determined in a 20 kb-window surrounding a the center of ENCODE-detected enhancers; and b the TSS of human RefSeq genes. The red curve
represents the average H3K27ac signal density in the high-exposed group and the blue curve represents the average density in the low-exposed
group. Both promoters and enhancers show global elevated H3K27ac modification levels in the individuals exposed to higher PM2.5 (red). TSS:
transcription start site
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previous studies. Specifically, various biological processes
related to inflammatory or immune cell activation and in-
flammation pathways such as CXC-chemokine receptors
appeared to be activated via altered acetylation levels of
H3K27 occurring after exposure to PM2.5.
PM2.5 is also notoriously implicated in blood coagula-

tion. Previous studies [29, 30] demonstrated that inhal-
ation of some PM components may be responsible for
altering red cell adhesiveness, inducing endothelial dys-
function, and increasing blood coagulation, all of which
offers biological mechanisms for the observed cardiovas-
cular effects of particulate air pollution exposure. Our
study found that increased exposures to PM2.5 might
cause increased acetylation levels of H3K27ac markers
for specific genes involved in platelet activation, blood

coagulation and hemostasis. Certain pathways are likely
to be activated via epigenetic regulation, thus leading to
increased coagulation of red cells, leading to various car-
diovascular diseases in turn.
Air pollution has been considered a risk factor for both

complex neurodegenerative diseases such as Alzheimer's
disease and Parkinson's disease, and monogenic neuro-
logical disorders such as Huntington's disease [31, 4,
32]. Our observation that there is an interaction be-
tween PM2.5 and epigenetic regulation offers a possible
explanation for these nervous system diseases. Certain
differential H3K27ac loci are potential regulators for
genes involved in the Alzheimer’s disease-amyloid
secretase pathway, Huntington disease and Parkinson
disease. Two Alzheimer’s disease-associated genetic

Fig. 3 Enriched functional annotations among differential H3K27ac loci. Proximal gene enrichments for differential H3K27ac loci were analyzed
using a GO biological processes; and b PANTHER pathways. Circle size is proportional to the number of identified genes. Circle transparency is
proportional to fold enrichment relative to the human genome. Functional annotations were ordered by FDR derived from hypergeometric test.
Red vertical lines indicate the cutoff at 5 % FDR. GO: gene ontology; FDR: false discovery rate
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variants (rs3764650, rs115550680) [33, 34] were found
to fall into the differential H3K27ac loci in our study.
Another variant (rs17173608) associated with depres-
sion and bipolar disorder [35] was also found to overlap
with a PM2.5-associated enhancer region. Our results
suggest that PM2.5 may play an important role in de-
regulating nervous system functions via its ability to
alter the acetylation levels of related enhancers.
By linking differentially modified H3K27ac loci to

complex-trait loci identified by GWAS studies [22], we
found that PM2.5-associated epigenetic changes may help
improve our understanding of human complex diseases/
traits. For example, ambient air pollution has been re-
ported to correlate with hospitalizations for IBD [36],
while our finding suggested that a previously identified in-
flammatory bowel disease-associated variant (rs12654812)
overlapped with a PM2.5-associated H3K27ac locus, thus
air pollution-associated IBD is likely mediated through
this histone modification marker.

Conclusions
Our study constitutes the first genome-wide characterization
of H3K27ac profiles in individuals who are subjected to
different exposure levels of PM2.5. Our findings reveal a
global elevation of the enhancer-associated H3K27ac
markers in individuals exposed to relatively high levels
of PM2.5. Furthermore, certain immune response and
inflammation-related genes are likely mediated via
H3K27ac makers under PM2.5 exposure. We recognize
that this study had a number of limitations. Due to the
limited sample size, it may not be plausible to draw firm
conclusions from these data yet. In addition, epigenetic
markers may be affected by possible confounding factors,
such as age, gender, and race. Statistically, potential false
positives from conducting multiple tests are a concern as

with any high-throughput technology. However, as the first
genome-wide H3K27ac landscape in people exposed to
high levels of PM2.5, our investigation suggests a trend that
increasing exposure to PM2.5 may enhance global gene ac-
tivity. Changes in certain H3K27ac modification loci may
affect local gene expression, which in turn could lead to a
variety of diseases. Large-scale studies in the future are war-
ranted to comprehensively evaluate and validate the genes
and pathways influenced by PM2.5 through H3K27ac and
other histone modifications.
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