3,182 research outputs found

    Semileptonic decays of BcB_c meson to S-wave charmonium states in the perturbative QCD approach

    Get PDF
    Inspired by the recent measurement of the ratio of BcB_c branching fractions to J/ψπ+J/\psi \pi^+ and J/ψμ+νμJ/\psi \mu^+\nu_{\mu} final states at the LHCb detector, we study the semileptonic decays of BcB_c meson to the S-wave ground and radially excited 2S and 3S charmonium states with the perturbative QCD approach. After evaluating the form factors for the transitions BcP,VB_c\rightarrow P,V, where PP and VV denote pseudoscalar and vector S-wave charmonia, respectively, we calculate the branching ratios for all these semileptonic decays. The theoretical uncertainty of hadronic input parameters are reduced by utilizing the light-cone wave function for BcB_c meson. It is found that the predicted branching ratios range from 10610^{-6} up to 10210^{-2} and could be measured by the future LHCb experiment. Our prediction for the ratio of branching fractions BR(Bc+J/Ψπ+)BR(Bc+J/Ψμ+νμ)\frac{\mathcal {BR}(B_c^+\rightarrow J/\Psi \pi^+)}{\mathcal {BR}(B_c^+\rightarrow J/\Psi \mu^+\nu_{\mu})} is in good agreement with the data. For BcVlνlB_c\rightarrow V l \nu_l decays, the relative contributions of the longitudinal and transverse polarization are discussed in different momentum transfer squared regions. These predictions will be tested on the ongoing and forthcoming experiments.Comment: 12 pages, 3 figures, 5 table

    Solar system tests for realistic f(T)f(T) models with nonminimal torsion-matter coupling

    Full text link
    In the previous paper, we have constructed two f(T)f(T) models with nonminimal torsion-matter coupling extension, which are successful in describing the evolution history of the Universe including the radiation-dominated era, the matter-dominated era, and the present accelerating expansion. Meantime, the significant advantage of these models is that they could avoid the cosmological constant problem of Λ\LambdaCDM. However, the nonminimal coupling between matter and torsion will affect the tests of Solar system. In this paper, we study the effects of Solar system in these models, including the gravitation redshift, geodetic effect and perihelion preccesion. We find that Model I can pass all three of the Solar system tests. For Model II, the parameter is constrained by the measure of the perihelion precession of Mercury.Comment: 10 page

    Direct CP violation in τ±K±ρ0(ω)ντK±π+πντ\tau^\pm\rightarrow K^\pm \rho^0 (\omega)\nu_\tau \rightarrow K^\pm \pi^+\pi^-\nu_\tau

    Get PDF
    We study the direct CP violation in the τ±K±ρ0(ω)ντK±π+πντ\tau^\pm\rightarrow K^\pm \rho^0 (\omega)\nu_\tau \rightarrow K^\pm \pi^+\pi^-\nu_\tau decay process in the Standard Model. An interesting mechanism involving the charge symmetry violating mixing between ρ0\rho^0 and ω\omega is applied to enlarge the CP asymmetry. With this mechanism, the maximum differential and localized integrated CP asymmetries can reach (5.61.7+2.9)×1012-(5.6^{+2.9}_{-1.7})\times10^{-12} and 6.33.3+2.4×10116.3^{+2.4}_{-3.3}\times 10^{-11}, respectively, which still leave plenty room for CP-violating New Physics to be discovered through this process

    3D Object Detection for Autonomous Driving: A Survey

    Full text link
    Autonomous driving is regarded as one of the most promising remedies to shield human beings from severe crashes. To this end, 3D object detection serves as the core basis of such perception system especially for the sake of path planning, motion prediction, collision avoidance, etc. Generally, stereo or monocular images with corresponding 3D point clouds are already standard layout for 3D object detection, out of which point clouds are increasingly prevalent with accurate depth information being provided. Despite existing efforts, 3D object detection on point clouds is still in its infancy due to high sparseness and irregularity of point clouds by nature, misalignment view between camera view and LiDAR bird's eye of view for modality synergies, occlusions and scale variations at long distances, etc. Recently, profound progress has been made in 3D object detection, with a large body of literature being investigated to address this vision task. As such, we present a comprehensive review of the latest progress in this field covering all the main topics including sensors, fundamentals, and the recent state-of-the-art detection methods with their pros and cons. Furthermore, we introduce metrics and provide quantitative comparisons on popular public datasets. The avenues for future work are going to be judiciously identified after an in-deep analysis of the surveyed works. Finally, we conclude this paper.Comment: 3D object detection, Autonomous driving, Point cloud

    Value of superb microvascular imaging ultrasonography in the diagnosis of carpal tunnel syndrome: Compared with color Doppler and power Doppler.

    Get PDF
    The aim of this study was to compare the value of superb microvascular imaging (SMI) in carpal tunnel syndrome (CTS) with that of color Doppler ultrasonography (CDUS) and power Doppler ultrasonography (PDUS).Fifty patients with symptomatic CTS and 25 healthy volunteers were enrolled. The cross-sectional area (CSA), CDUS score, PDUS score, and SMI score of the median nerve (MN) at the carpal tunnel were recorded. The value of different ultrasonography (US) diagnostic strategies was calculated.The blood flow display ratio in the MN of the healthy volunteers had no statistical difference between CDUS, PDUS, and SMI (20%, 32%, and 48%, respectively, P \u3e.05). The blood flow display ratio for SMI in patients was significantly higher than that of CDUS and PDUS (90%, 52%, and 60%, respectively,
    corecore