30 research outputs found

    GraphX: Unifying Data-Parallel and Graph-Parallel Analytics

    Full text link
    From social networks to language modeling, the growing scale and importance of graph data has driven the development of numerous new graph-parallel systems (e.g., Pregel, GraphLab). By restricting the computation that can be expressed and introducing new techniques to partition and distribute the graph, these systems can efficiently execute iterative graph algorithms orders of magnitude faster than more general data-parallel systems. However, the same restrictions that enable the performance gains also make it difficult to express many of the important stages in a typical graph-analytics pipeline: constructing the graph, modifying its structure, or expressing computation that spans multiple graphs. As a consequence, existing graph analytics pipelines compose graph-parallel and data-parallel systems using external storage systems, leading to extensive data movement and complicated programming model. To address these challenges we introduce GraphX, a distributed graph computation framework that unifies graph-parallel and data-parallel computation. GraphX provides a small, core set of graph-parallel operators expressive enough to implement the Pregel and PowerGraph abstractions, yet simple enough to be cast in relational algebra. GraphX uses a collection of query optimization techniques such as automatic join rewrites to efficiently implement these graph-parallel operators. We evaluate GraphX on real-world graphs and workloads and demonstrate that GraphX achieves comparable performance as specialized graph computation systems, while outperforming them in end-to-end graph pipelines. Moreover, GraphX achieves a balance between expressiveness, performance, and ease of use

    Black or White? How to Develop an AutoTuner for Memory-based Analytics [Extended Version]

    Full text link
    There is a lot of interest today in building autonomous (or, self-driving) data processing systems. An emerging school of thought is to leverage AI-driven "black box" algorithms for this purpose. In this paper, we present a contrarian view. We study the problem of autotuning the memory allocation for applications running on modern distributed data processing systems. For this problem, we show that an empirically-driven "white-box" algorithm, called RelM, that we have developed provides a close-to-optimal tuning at a fraction of the overheads compared to state-of-the-art AI-driven "black box" algorithms, namely, Bayesian Optimization (BO) and Deep Distributed Policy Gradient (DDPG). The main reason for RelM's superior performance is that the memory management in modern memory-based data analytics systems is an interplay of algorithms at multiple levels: (i) at the resource-management level across various containers allocated by resource managers like Kubernetes and YARN, (ii) at the container level among the OS, pods, and processes such as the Java Virtual Machine (JVM), (iii) at the application level for caching, aggregation, data shuffles, and application data structures, and (iv) at the JVM level across various pools such as the Young and Old Generation. RelM understands these interactions and uses them in building an analytical solution to autotune the memory management knobs. In another contribution, called GBO, we use the RelM's analytical models to speed up Bayesian Optimization. Through an evaluation based on Apache Spark, we showcase that RelM's recommendations are significantly better than what commonly-used Spark deployments provide, and are close to the ones obtained by brute-force exploration; while GBO provides optimality guarantees for a higher, but still significantly lower compared to the state-of-the-art AI-driven policies, cost overhead.Comment: Main version in ACM SIGMOD 202

    Novel drugs approved by the EMA, the FDA, and the MHRA in 2023: A year in review

    Get PDF
    In 2023, seventy novel drugs received market authorization for the first time in either Europe (by the EMA and the MHRA) or in the United States (by the FDA). Confirming a steady recent trend, more than half of these drugs target rare diseases or intractable forms of cancer. Thirty drugs are categorized as “first‐in‐class” (FIC), illustrating the quality of research and innovation that drives new chemical entity discovery and development. We succinctly describe the mechanism of action of most of these FIC drugs and discuss the therapeutic areas covered, as well as the chemical category to which these drugs belong. The 2023 novel drug list also demonstrates an unabated emphasis on polypeptides (recombinant proteins and antibodies), Advanced Therapy Medicinal Products (gene and cell therapies) and RNA therapeutics, including the first‐ever approval of a CRISPR‐Cas9‐based gene‐editing cell therapy

    Editorial of special issue of WISE 2019

    No full text
    corecore