13 research outputs found
Developmental plasticity and transgenerational reprogramming following vitrified embryo transfer in Oryctolagus cuniculus
Tesis por compendio[ES] Las tecnologías de reproducción asistida suponen un cambio drástico en el entorno natural del embrión, al no conseguir imitar las condiciones maternales óptimas, por lo que su aplicación implica consecuencias para el desarrollo del organismo. El objetivo general de esta tesis fue estudiar los efectos a largo plazo y transgeneracionales del estrés provocado durante un procedimiento de transferencia de embriones vitrificados, utilizando el conejo como modelo animal.
En el Capítulo I, demostramos que la transferencia de mórulas tempranas o compactas resulta en tasas de supervivencia al parto > 70% en fresco y > 55% tras la vitrificación. La facilidad con la que se pueden realizar estos procedimientos, el elevado número de descendientes que podemos obtener y el corto ciclo de vida del conejo, fomentaron y facilitaron los siguientes estudios.
En el Capítulo II, se compararon las diferencias en el desarrollo a corto y largo plazo entre los animales nacidos de embriones transferidos en fresco (FT) o tras su vitrificación (VT), utilizando una población concebida de forma natural (NC) como referencia. Tanto las tasas de supervivencia prenatal, como el rendimiento del crecimiento postnatal, se redujeron significativamente a medida que aumentó la manipulación embrionaria (NC<FT<VT). Además, comparamos el efecto de dos dispositivos de vitrificación, observando que, aunque el cryotop ejerció un efecto positivo sobre la supervivencia fetal, implicó mayores desviaciones fenotípicas (rendimiento de crecimiento y lactancia) postnatalmente que el dispositivo de la ministraw. Sin embargo, todas las progenies fueron sanas y fértiles. Por lo tanto, estos resultados demostraron la gran plasticidad del embrión de mamífero.
El objetivo del Capítulo III fue evaluar los efectos del procedimiento de transferencia de embriones vitrificados (VET) en el desarrollo, comparando animales VT y NC. Así, detectamos que los animales VT presentaron alteraciones del peso al nacer y del patrón de crecimiento, viéndose los machos más afectados que las hembras. En la edad adulta, los machos VT presentaron un menor peso corporal, del hígado y del corazón. Un análisis proteómico hepático mostró cambios en relación con la fosforilación oxidativa y el metabolismo de los lípidos y el zinc. Mediante un análisis de sangre, se comprobó que el estado de salud entre los animales VT y NC fue comparable.
En el Capítulo IV, se constituyó un modelo de tres generaciones (F1, F2 y F3) para evaluar los efectos transgeneracionales del VET. Los resultados mostraron que los efectos directos (F1) del VET fueron intergeneracionales (F2) y transgeneracionales (F3), ya que las progenies VT mostraron alteraciones en el crecimiento, peso corporal adulto y peso hepático. Un estudio molecular (transcriptómico y metabolómico) del tejido hepático reveló alteraciones en el metabolismo del zinc y los ácidos grasos insaturados a través de las generaciones, correlacionado con el fenotipo VT. No obstante, la fertilidad fue similar entre los machos VT y NC en cada generación, denotando un buen estado de salud.
Finalmente, en el Capítulo V, mediante un enfoque comparativo multi-ómico (metabolómico, proteómico y epigenómico) del tejido hepático entre animales F3-VT y F3-NC, se demostró una alteración global de la fisiología molecular en los animales VT, relacionada principalmente con el metabolismo de los lípidos (ácidos grasos poliinsaturados, esteroides, hormonas esteroides...). Además, se detectaron amplios cambios en el epigenoma hepático, demostrando la herencia transgeneracional de los cambios moleculares inducidos por el VET en los embriones de la F1. El estado de salud fue similar entre los animales VT y NC.
A lo largo de esta tesis se ha demostrado, por primera vez, que el VET induce una reprogramación embrionaria del desarrollo que persiste hasta la edad adulta y en las generaciones posteriores. Se cree que los mecanismos epigenéticos median esta plasticidad del
desarrollo y su herencia transgeneracional, un hecho también avalado por nuestros
resultados. Por lo tanto, los diferentes campos que actualmente se nutren de la
criopreservación y transferencia de embriones, como la medicina y la producción animal, deberían evaluar cómo estos procedimientos pueden afectar a la eficiencia o la
consecución de sus objetivos.[EN] Assisted reproductive technologies involve the furthest change from the natural environment by failing to mimic optimal maternal conditions, and thereby entail consequences for late development. The general aim of this thesis was to study the long-term and transgenerational effects of the in vitro stressors occurring during a vitrified embryo transfer procedure on the rabbit model.
In Chapter I, we prove that transferring early or compact morula leads to rates of survival at birth >70% in fresh and >55% after vitrification. The ease of performing both embryo cryopreservation and embryo transfer procedures, the high numbers of descendants that we are able to obtain and the short life cycle of the rabbit encouraged and facilitated the following studies.
Chapter II was designed to compare the short and long-term developmental differences between animals born from fresh-transferred (FT) and vitrified-transferred (VT) embryos, using a naturally conceived (NC) population as control reference. Both prenatal survival rates and growth performance were significantly reduced as embryo manipulation was increased (NC<FT<VT). In addition, we compare the effect of two vitrification devices, noting that although cryotop exerted a positive effect on foetal survival, incurred higher phenotypic (growth and lactation performances) deviations postnatally than the straw device. Then, the choice of vitrification device is not trivial. However, all progenies were healthy and fertile. Therefore, these results demonstrated the high developmental plasticity of the mammalian embryo under different in vitro stressors.
The aim of Chapter III was to evaluate the effects of the entire vitrified embryo transfer procedure (VET) on development, detecting that VT animals have modifications of the birth weight and growth pattern, but males were more affected than females. At adulthood, VT males were smaller and showed a significantly lower liver and heart weight than NC males. A comparative proteomic analysis showed changes in relation to oxidative phosphorylation and dysregulations in the zinc and lipid metabolism. However, a blood analysis (haematological and biochemical) revealed that health status was comparable between VT and NC animals.
In Chapter IV, a three generation (F1, F2 and F3) model was constituted in order to assess the transgenerational effects of the VET. The results showed that direct (F1) effects of the VET were also intergenerational (F2) and transgenerational (F3), as VT progenies exhibited alterations in the growth velocity, adult body weight and liver weight in each generation. A comparative molecular (transcriptomic and metabolomics) study in the liver tissue unveiled alterations in the zinc and unsaturated fatty acid metabolism across the generations, which can be correlated with the VT phenotype. Nonetheless, similarities in the fertility between VT males and their NC counterparts in each generation denote that VET did not seem to impair the health status in the VT animals.
Finally, in Chapter V, a comparative multi-omic (metabolomic, proteomic and epigenomic) approach was performed in the liver tissue between F3-VT and F3-NC animals. Both metabolomic and proteomic analyses showed global alteration in the hepatic metabolism of VT animals, mainly related to lipid metabolism (e.g. polyunsaturated fatty acids, steroids, steroid hormones¿). In addition, broad methylation changes were detected in the hepatic epigenome, involving genes related with lipid metabolism and apoptosis. These data demonstrated the transgenerational inheritance of the changes induced by VET in ancestors' embryos. The healthy status was similar between VT and NC animals.
Through this thesis, it has been demonstrated for the first time that VET induces a developmental reprogramming that persists until adulthood and in subsequent generations, incurring long-term consequences for the phenotype and the molecular physiology of the resultant offspring.[CA] Les tecnologies de reproducció assistida suposen un canvi dràstic en l'entorn natural de l'embrió, al no aconseguir imitar les condicions maternals òptimes, per la qual cosa la seua aplicació implica conseqüències per al desenvolupament de l'organisme. L'objectiu general d'esta tesi va ser estudiar els efectes a llarg termini i transgeneracionals de l'estrés provocat durant un procediment de transferència d'embrions vitrificats, utilitzant el conill com a model animal. En el Capítol I, demostrem que la transferència de mórules primerenques o compactes resulta en taxes de supervivència al part > 70% en fresc i > 55% després de la vitrificació. La facilitat amb què es poden realitzar aquests procediments, l'elevat nombre de descendents que podem obtindre i el curt cicle de vida del conill, van fomentar i van facilitar els següents estudis. En el Capítol II, es van comparar les diferències en el desenvolupament a curt i llarg termini entre els animals nascuts d'embrions transferits en fresc (FT) o després de la seua vitrificació (VT), utilitzant una població concebuda de forma natural (NC) com a referència. Tant les taxes de supervivència prenatal, com el rendiment del creixement postnatal, es van reduir significativament a mesura que va augmentar la manipulació embrionària (NC 70% en fresc i > 55% després de la vitrificació. La facilitat amb què es poden realitzar aquests procediments, l'elevat nombre de descendents que podem obtindre i el curt cicle de vida del conill, van fomentar i van facilitar els següents estudis. En el Capítol II, es van comparar les diferències en el desenvolupament a curt i llarg termini entre els animals nascuts d'embrions transferits en fresc (FT) o després de la seua vitrificació (VT), utilitzant una població concebuda de forma natural (NC) com a referència. Tant les taxes de supervivència prenatal, com el rendiment del creixement postnatal, es van reduir significativament a mesura que va augmentar la manipulació embrionària (NC<FT<VT). A més, es va comparar l'efecte de dos dispositius de vitrificació, observant que, encara que el cryotop va exercir un efecte positiu sobre la supervivència fetal, va implicar majors desviacions fenotípiques (rendiment de creixement i lactància) postnatalment que el dispositiu de la ministraw. No obstant això, totes les progènies van ser sanes i fèrtils. Per tant, estos resultats van demostrar la gran plasticitat de l'embrió de mamífer. L'objectiu del Capítol III va ser avaluar els efectes del procediment de transferència d'embrions vitrificats (VET) en el desenvolupament, comparant animals VT i NC. Així, vam detectar que els animals VT van presentar alteracions del pes al nàixer i del patró de creixement, veient-se els mascles més afectats que les femelles. En l'edat adulta, els mascles VT van presentar un menor pes corporal, del fetge i del cor. Un anàlisi proteòmic hepàtic va mostrar canvis en relació amb la fosforilació oxidativa i el metabolisme dels lípids i el zinc. Per mitjà d'un anàlisi de sang, es va comprovar que l'estat de salut entre els animals VT i NC era comparable. En el Capítol IV, es va constituir un model de tres generacions (F1, F2 i F3) per a avaluar els efectes transgeneracionals del VET. Els resultats van mostrar que els efectes directes (F1) del VET van ser intergeneracionals (F2) i transgeneracionals (F3), ja que les progènies VT van mostrar alteracions en el creixement, pes corporal adult i pes hepàtic. Un estudi molecular (transcriptòmic i metabolòmic) del teixit hepàtic va revelar alteracions en el metabolisme del zinc i els àcids grassos insaturats a través de les generacions, correlacionat amb el fenotip VT. No obstant això, la fertilitat va ser semblant entre els mascles VT i NC en cada generació, denotant un bon estat de salut. Finalment, en el Capítol V, per mitjà d'un enfocament comparatiu multi-òmic (metabolòmic, proteòmic i epigenòmic) del teixit hepàtic entre animals F3-VT i F3-NC, es va demostrar una alteració global de la fisiologia molecular en els animals VT, relacionada principalment amb el metabolisme dels lípids (àcids grassos poliinsaturats, esteroides, hormones esteroides...) . A més, es van detectar amplis canvis en l'epigenoma, demostrant l'herència transgeneracional dels canvis moleculars induïts pel VET en els embrions de la F1. L'estat de salut va ser semblant entre els animals VT i NC. Al llarg d'esta tesi s'ha demostrat, per primera vegada, que el VET indueix una reprogramació embrionària del desenvolupament que persisteix fins a l'edat adulta i en les generacions posteriors. Es
creu que els mecanismes epigenètics medien aquesta plasticitat del desenvolupament i
la seua herència transgeneracional, un fet també avalat pels nostres resultats. Per tant,
els diferents camps que actualment es nodreixen de la criopreservació i transferència
d'embrions, com la medicina i la producció animal, haurien d'avaluar com aquests
procediments poden afectar l'eficiència o la consecució dels seus objectius.García Domínguez, X. (2020). Developmental plasticity and transgenerational reprogramming following vitrified embryo transfer in Oryctolagus cuniculus [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/149562TESISCompendi
Development of embryonic kidney biobanks as an unlimited grafts source for renal replacement therapy
Hoy en día, es bien sabido que, debido a la escasez de órganos, el alotrasplante no puede ser la solución para todos los pacientes que padecen una enfermedad orgánica en etapa terminal. Según la Organización Mundial de la Salud, el trasplante de órganos cubre apenas el 10% de la necesidad mundial. Por lo tanto, se necesitan soluciones alternativas. La medicina regenerativa busca diferentes tecnologías para generar órganos a demanda, ya sea mediante estrategias in vitro o in vivo. En particular, el trasplante de riñones embrionario ha sido considerado durante mucho tiempo como una posible solución a la enfermedad renal en etapa terminal, con ventajas particulares sobre otras opciones. Los metanefros, extraídos y trasplantados en el momento oportuno, son capaces de continuar su crecimiento sin desencadenar una respuesta inmunológica, dando lugar a estructuras renales vascularizadas por el huésped y con funcionalidad tanto excretora como endocrina. El objetivo de esta tesis fue utilizar el conejo como modelo animal para avanzar en el establecimiento de estrategias que conviertan el trasplante de metanefros en una realidad clínica cada vez más cercana.
En particular, el objetivo del Capítulo I fue evaluar la viabilidad de un abordaje laparoscópico para el trasplante de metanefros, como una alternativa mínimamente invasiva a las cirugías abiertas que se realizan actualmente. Debido a su tamaño intermedio entre los roedores y los animales de granja más grandes, el conejo constituye un modelo adecuado para modelizar el abordaje laparoscópico. La técnica de trasplante laparoscópico descrita en este capítulo se validó al tiempo que se determinó por primera vez el momento ideal para trasplantar metanefros de conejo sin tratamiento inmunosupresor. Los metanefros de fetos de conejo de 15 (E15) y 16 días (E16) crecieron con una eficiencia media cercana al 50%, exhibiendo glomérulos, túbulos proximales y distales, y conductos colectores normales sin cambios inmunológicos relevantes en los hospedadores. Con ligeras adaptaciones, esta técnica laparoscópica podría utilizarse para impulsar tanto los ensayos preclínicos como los clínicos, garantizando el control y la seguridad del procedimiento.
Buscando estrategias que permitan que los metanefros trasplantados generen estructuras renales más grandes con una funcionalidad compatible con la vida, en el Capítulo II se evaluaron los efectos promotores del crecimiento del citrato de sildenafilo. Satisfactoriamente, la adición de pequeñas dosis de citrato de sildenafilo (10 μM) durante el trasplante de los metanefros, permitió incrementar tanto la neo- vascularización como el crecimiento de las estructuras renales resultantes, así como su filtración glomerular. El citrato de sildenafilo podría ejercer sus acciones promotoras del crecimiento a través de la potenciación de la angiogénesis, la mejora hemodinámica y los efectos renoprotectores. El tratamiento con citrato de sildenafilo puede contribuir al desarrollo de un procedimiento estandarizado que permita la formación de riñones de soporte vital, esenciales para garantizar la viabilidad del trasplante de metanefros para aplicación clínica.
Por último, los Capítulos III, IV y V se diseñaron para evaluar si era posible la creación de un banco de metanefros mediante técnicas de vitrificación. Utilizando el cryotop® como dispositivo de carga, se vitrificaron metanefros de conejo (E15 y E16) utilizando dos soluciones de vitrificación (VM3 y M22), caracterizadas por su baja toxicidad y su idoneidad para la preservación del tejido renal. Después de un almacenamiento criogénico a largo plazo, los metanefros se desvitrificaron y se trasplantaron por vía laparoscópica en huéspedes no inmunodeprimidos. En conjunto, los resultados mostraron que la eficiencia del trasplante fue similar independientemente del origen de los metanefro, ya fuese fresco (49,2 ± 8,2%), vitrificado con VM3 (37,5 ± 8,0%) o vitrificado con M22 (33,5 ± 7,6%). La edad de los metanefros (E15 y E16) no tuvo un efecto significativo. En todos los casos, los metanefros generaron estructuras renales vascularizadas por el huésped sin desencadenar una respuesta inmunológica, y presentaron glomérulos maduros cuya capacidad de filtración fue probada por el estado hidronefrótico. Por lo tanto, quedó demostrado que la criopreservación de metanefros mediante vitrificación conserva su viabilidad y capacidad de desarrollo. Si se pudiera equilibrar la oferta y la demanda de órganos utilizando riñones embrionarios, este enfoque de criopreservación podría disociar el momento de la recuperación del órgano y su trasplante, permitiendo su distribución a los pacientes que lo necesiten en cualquier lugar, y garantizando un adecuado control de inventario y calidad.
En conjunto, estos hallazgos deberían alentar el diseño de estudios adecuados para respaldar la translación clínica del trasplante de metanefros como terapia de la enfermedad renal en etapa terminal. Con las nuevas herramientas descritas a lo largo de esta tesis en nuestras manos, los futuros estudios preclínicos se vuelven más factibles, lo que hace que la aplicación clínica de la ésta técnica esté un paso más cerca
Trasplante de riñones embrionarios: una alternativa a la escasez de donantes
[ES] Actualmente, la prevalencia de las enfermedades renales crónicas “ERC” sigue
Superando el desarrollo de estrategias de tratamiento eficaces, por lo que
Aquellos pacientes con enfermedades avanzadas deben a recurrir a terapias
De remplazo renal, como la hemodiálisis o la diálisis peritoneal.
El presente trabajo tiene como objetivo comprobar la capacidad de desarrollo
De los metanefros (riñones embrionarios) al ser implantados en un organismo
Adulto sin necesidad de inmunosupresores. Usando el conejo como modelo
animal, se obtuvieron metanefros (entendidos como posibles precursores de
órganos) de embriones de 15 días y se trasplantaron en animales adultos
(alotrasplante), analizándose su capacidad de desarrollo y de generar nefronas
21 días postKtrasplante. Este proceso se repitió con metanefros vitrificados
Con dos medios de vitrificación diferentes, el VM3 y el M22, para evaluar el
efecto de ambos medios sobre la viabilidad y el postKdesarrollo de los
metanefros.
Los resultados que se obtuvieron fueron los siguientes: los metanefros frescos
Que se recuperaron habían adquirido un tamaño, morfología y estructura
Similar a los riñones controles de 36 días, además mostraban el resultado de
Una nefrogénesis activa (abundantes nefronas).Los metanefros vitrificados con el medio VM3 mostraron un desarrollo similar a los frescos, y además se
Observó el resultado de una gran nefrogénesis, presentando una gran
Integridad celular tras el proceso de crioconservación. En cambio los
Metanefros vitrificados con el medio M22 presentaban un mayor retraso en el
Desarrollo que los vitrificados con VM3 respecto a los frescos. Además la
Nefrogénesis en este experimento, aunque presente, había sido escasa y,
Aunque presentaban una gran integridad celular tras la vitrificación, ésta era
Menor que en los metanefros vitrificados con el medio VM3.[EN] Currently, the prevalence of chronic kidney disease continues to overcome
the development of effective treatment strategies. Therefore, those patients
with advanced disease are obligated to use renal replacement therapies such
as hemodialysis or peritoneal dialysis.
This work aims to test the ability of metanephros (embryonic kidneys) to
develop after being implanted in an adult organism without
immunosuppressants. Rabbit metanephros were obtained from 15-day-old
embryos and transplanted into adult animals (allogeneic). Their ability to
generate nephrons were analysed 21 days post-transplant. This process was
repeated with vitrified metanephros, using two different vitrification solutions,
the VM3 and M22. Then, the effect of both solutions in viability and
development of metanephroi were evaluated.
As results showed, those recovered fresh metanephros acquired a size,
morphology and a structure similar to the controls kidneys of 36-day-old.
Additionally, fresh metanephros showed an active nephrogenesis (abundant
nephrons). Vitrified metanephros with VM3 solution showed a similar
development to the fresh metanephros. A large nephrogenesis and correct
cell integrity after cryopreservation were also observed. However, vitrified
metanephros with M22 solution showed more delay in development than
fresh metanephros and VM3 vitrified metanephros. Furthermore, the
nephrogenesis observed in this case was less than in the VM3 vitrified
metanephros. Although vitrified metanephroi with M22 also presented a
correct cell integrity after vitrification, it was lower than in the VM3 vitrified
metanephros.[CA] Actualment, la prevalença de les malalties renals cròniques segueix superant
el desenvolupament de tractaments eficaços, de manera que aquells
pacients amb malalties avançades deuen recórrer a teràpies de
reemplaçament renal, com l'hemodiàlisi o la diàlisi peritoneal.
Aquest treball té com a objectiu comprovar la capacitat de desenvolupament
dels metanefros (ronyons embrionaris) al ser implantats en un organisme
adult sense necessitat d'immunosupressors. Usant el conill com a model
animal, s’obtingueren metanefros (entesos com a possibles precursors
d'òrgans) d'embrions de 15 dies i es trasplantaren en animals adults
(alYlotrasplantament),analitzant la seua capacitat de desenvolupament i de
generar nefrones 21 dies postKtrasplantament .Aquest procés es va repetir
amb metanefros vitrificats amb dos medis de vitrificació diferents, el VM3 i el
M22, per avaluar l'efecte d'ambdós medis sobre la viabilitat i el postK
desenvolupament dels metanefros.
Els resultats que s’obtingueren varen ser els següents: els metanefros frescs
que es van recuperar havien adquirit una mida, morfologia i estructura
similar als ronyons controls de 36 dies, a més mostraven el resultat d'una
nefrogènesi activa (abundants nefrones). Els metanefros vitrificats amb el
medi VM3 van mostrar un desenvolupament similar als frescs i, a més,es va
observar el resultat d'una gran nefrogènesi, presentant una gran integritat
celYlular després del procés de crioconservació. En canvi els metanefros
vitrificats amb el medi M22 presentaven un major retard en el
desenvolupament que els vitrificats amb VM3(respecte als frescs). A més la
nefrogènesi en aquest experiment, encara que present, havia estat escassa,
tot i que presentaven una gran integritat celYlular després de la vitrificació,
aquesta era menor que en els metanefros vitrificats amb el medi VM3.García Domínguez, X. (2014). Trasplante de riñones embrionarios: una alternativa a la escasez de donantes. http://hdl.handle.net/10251/39790.Archivo delegad
Embryonic Organ Transplantation: The New Era of Xenotransplantation
Here, we review the recent advances towards the use of organs from embryonic donors, antecedent investigations, and the latest work from our own laboratory exploring the utility for transplantation of embryonic kidney as an organ replacement therapy. In addition, we have recently reported, for the first time, that it is possible to create a long-term biobank of kidney precursors as an unlimited source of organs for xenotransplantation, facilitating inventory control and the distribution of organs
Early Embryo Exposure to Assisted Reproductive Manipulation Induced Subtle Changes in Liver Epigenetics with No Apparent Negative Health Consequences in Rabbit
[EN] Embryo manipulation is a requisite step in assisted reproductive technology (ART). Therefore, it is of great necessity to appraise the safety of ART and investigate the long-term effect, including lipid metabolism, on ART-conceived offspring. Augmenting our ART rabbit model to investigate lipid metabolic outcomes in offspring longitudinally, we detected variations in hepatic DNA methylation ART offspring in the F3 generation for embryonic exposure (multiple ovulation, vitrification and embryo transfer). Through adult liver metabolomics and proteomics, we identified changes mainly related to lipid metabolism (e.g., polyunsaturated fatty acids, steroids, steroid hormone). We also found that DNA methylation analysis was linked to changes in lipid metabolism and apoptosis genes. Nevertheless, these differences did not apparently alter the general health status. Thus, our findings suggest that ART is likely to be a player in embryo epigenetic events related to hepatic homeostasis alteration in adulthood.This research was funded by the Spanish Ministry of Economy and Competitiveness (MINECO), Spain, grant number AGL2014-53405-C2-1-P and by Conselleria d'Educacio, Investigacio, Cultura i Esport, Spain, grant number Prometeo II 2014/036. Ximo Garcia-Dominguez was supported by a research grant from the Ministry of Economy, Industry and Competitiveness of Spain (BES-2015-072429).García-Domínguez, X.; Diretto, G.; Peñaranda, D.; Frusciante, S.; García-Carpintero, V.; Cañizares Sales, J.; Vicente Antón, JS.... (2021). Early Embryo Exposure to Assisted Reproductive Manipulation Induced Subtle Changes in Liver Epigenetics with No Apparent Negative Health Consequences in Rabbit. International Journal of Molecular Sciences. 22(18):1-17. https://doi.org/10.3390/ijms22189716S117221
Comparative Study of Semen Parameters and Hormone Profile in Small-Spotted Catshark (Scyliorhinus canicula): Aquarium-Housed vs. Wild-Captured
[EN] Comprehensive knowledge of chondrichthyan reproductive biology is crucial for the development of reproductive technologies. For that reason, a male reproductive evaluation was performed on the basis of a comparison of samples collected from wild-captured and aquarium-housed small-spotted catshark (Scyliorhinus canicula). Semen quality, sperm morphometry, and reproductive hormones were assessed. The results demonstrate good in vitro semen quality in aquarium-housed sharks, although there was lower plasma testosterone.
Several chondrichthyan species are threatened, and we must increase our knowledge of their reproductive biology in order to establish assisted reproductive protocols for ex situ or in situ endangered species. The small-spotted catshark (Scyliorhinus canicula) is one of the most abundant shark species of the Mediterranean coast and is easy to maintain in aquaria; therefore, it is considered an ideal reproductive model. This study aimed to compare S. canicula male reproductive function in aquarium-housed (n = 7) and wild-captured animals, recently dead (n = 17). Aquarium-housed animals had lower semen volume (p = 0.005) and total sperm number (p = 0.006) than wild-captured animals, but similar sperm concentrations. In terms of sperm parameters, aquarium-housed sharks showed higher total sperm motility (p = 0.004), but no differences were observed regarding sperm viability, mitochondrial membrane potential, or membrane integrity. A morphometric study pointed to a significantly longer head (p = 0.005) and acrosome (p = 0.001) in wild-captured animals. The results of the spermatozoa morphological study of S. canicula were consistent with previous results obtained in other chondrichthyan species. With regard to sex hormones, testosterone levels were significantly lower in aquarium-housed animals (p & LE; 0.001), while similar levels of 17 beta-estradiol and progesterone were found. In short, the present study provides evidence of good in vitro semen quality in S. canicula housed in an aquarium, underlining their excellent potential for application in reproductive technologies for this and other chondrichthyan species.Muñoz-Baquero, M.; Marco-Jiménez, F.; Garcia-Domínguez, X.; Ros-Santaella, JL.; Pintus, E.; Jiménez-Movilla, M.; García-Párraga, D.... (2021). Comparative Study of Semen Parameters and Hormone Profile in Small-Spotted Catshark (Scyliorhinus canicula): Aquarium-Housed vs. Wild-Captured. Animals. 11(10):1-14. https://doi.org/10.3390/ani11102884114111
Extra-uterine (abdominal) full term foetus in a 15-day pregnant rabbit
[EN] Background: While ectopic pregnancies account for 1-2% of all pregnancies, abdominal pregnancy is extremely rare, accounting for approximately 1% of ectopic pregnancies. Extrauterine abdominal pregnancy is defined as the implantation and development of an embryo in the peritoneal cavity. The present report is the first of an incidental case of abdominal pregnancy within four full-term foetus simultaneously with 2 weeks of physiological gestation in a healthy doe rabbit.
Case presentation: The doe was born on November 3, 2014 and the first partum took place on May 18, 2015. The doe had previously delivered and weaned an average of 12.0 +/- 1.41 live kits at birth (no stillbirths were recorded) during 5 consecutive pregnancies. The last mating was on December 18, 2015 and the detection of pregnancy failure post breeding (by abdominal palpation) on December 31, 2015. Then, the doe was artificially inseminated on January 27, 2016, diagnosed pregnant on February 11, 2016 and subsequently euthanized to recover the foetus. A ventral midline incision revealed a reproductive tract with 12 implantation sites with 15 days old foetus and 4 term foetus in abdominal cavity. There were two foetus floating on either side of the abdominal cavity and two suspended near the greater curvature of the stomach. They were attached to internal organs by means of one or 2 thread-like blood vessels that linked them to the abdominal surfaces.
Conclusions: In our opinion a systematic monitoring of rabbit breeding should be included to fully understand and enhance current knowledge of this phenomenon of abdominal pregnancy.This work was supported by Spanish Research Project AGL2014-53405-C2-1-P (Interministerial Commission on Science and Technology).Marco-Jiménez, F.; Garcia-Dominguez, X.; Valdes-Hernández, J.; Vicente Antón, JS. (2017). Extra-uterine (abdominal) full term foetus in a 15-day pregnant rabbit. BMC Veterinary Research. 13:1-4. https://doi.org/10.1186/s12917-017-1229-7S1413Petracci M, Bianchi M, Cavani C. Development of rabbit meat products fortified with n-3 polyunsaturated fatty acids. Nutrients. 2009;1:111–8.FAOSTAT (Food and Agriculture Organization of the United Nations, authors). Available online: http://faostat.fao.org/site/569/DesktopDefault.aspx?PageID=569#ancor . Accessed Sept 2012.Segura Gil P, Peris Palau B, Martínez Martínez J, Ortega Porcel J, Corpa Arenas JM. Abdominal pregnancies in farm rabbits. Theriogenology. 2004;62:642–51.Rosell JM, de la Fuente LF. Culling and mortality in breeding rabbits. Prev Vet Med. 2009;88:120–7.Tena-Betancourt E, Tena-Betancourt CA, Zúniga-Muñoz AM, Hernández-Godínez B, Ibáñez-Contreras A, Graullera-Rivera V. Multiple extrauterine pregnancy with early and near full-term mummified foetuses in a New Zealand white rabbit (Oryctolagus Cuniculus). J Am Assoc Lab Anim Sci. 2014;53:204–7.Sánchez JP, Theilgaard P, Mínguez C, Baselga M. Constitution and evaluation of a long-lived productive rabbit line. J Anim Sci. 2008;86:515–25.Savietto D, Friggens NC, Pascual JJ. Reproductive robustness differs between generalist and specialist maternal rabbit lines: the role of acquisition and allocation of resources. Genet Sel Evol. 2015;47:2.Viudes-de-Castro MP, Vicente JS. Effect of sperm count on the fertility and prolificity rates of meat rabbits. Anim Reprod Sci. 1997;46:313–9.Marco-Jiménez F, Garcia-Dominguez X, Jimenez-Trigos E, Vera-Donoso CD, Vicente JS. Vitrification of kidney precursors as a new source for organ transplantation. Cryobiology. 2015;70:278–82.Garcia-Dominguez X, Vera-Donoso CD, Jimenez-Trigos E, Vicente JS, Marco-Jimenez. First steps towards organ banks: vitrification of renal primordial. Cryo Letters. 2016;37:47–52.Arvidsson A. Extra-uterine pregnancy in a rabbit. Vet Rec. 1998;142:176.Glišić A, Radunović N, Atanacković J. Methotrexate and fallopian tubes in ectopic pregnancy. Acta veterinaria. 2006;56:375–82.Nwobodo EI. Abdominal pregnancy. A case report. Ann Afr Med. 2004;3:195–6.Nassali MN, Benti TM, Bandani-Ntsabele M, Musinguzi E. A case report of an asymptomatic late term abdominal pregnancy with a live birth at 41 weeks of gestation. BMC Res Notes. 2016;9:31.Baffoe P, Fofie C, Gandau BN. Term abdominal pregnancy with healthy new-born: a case report. Ghana Med J. 2011;45:81–3.Eleje GU, Adewae O, Osuagwu IK, Obianika CE. Post-date extra-uterine abdominal pregnancy in a rhesus negative Nullipara with successful outcome: a case report. J Women's Health. 2013;6:2.Hong CC, Armstrong ML. Ectopic pregnancy in 2 guinea-pigs. Lab Anim. 1978;12:243–4.Peters LJ. Abdominal pregnancy in a golden hamster (Mesocricetus Auratus). Lab Anim Sci. 1982;32:392–3.Xiccato G, Trocino A, Boiti C, Brecchia G. Reproductive rhythm and litter weaning age as they affect rabbit doe performance and body energy balance. Anim Sci. 2005;81:289–96.Fortun-Lamothe L, De Rochambeau H, Lebas F, Tudela F. Influence of the number of suckling young on reproductive performance in intensively reared rabbits does. In: Blasco A, editor. Proceedings of the 7th world rabbit congress; 2002. p. 125–32
Current Bioengineering and Regenerative Strategies for the Generation of Kidney Grafts on Demand
[EN] Currently in the USA, one name is added to the organ transplant waiting list every 15 min. As this list grows rapidly, fewer than one-third of waiting patients can receive matched organs from donors. Unfortunately, many patients who require a transplant have to wait for long periods of time, and many of them die before receiving the desired organ. In the USA alone, over 100,000 patients are waiting for a kidney transplant. However, it is a problem that affects around 6% of the word population. Therefore, seeking alternative solutions to this problem is an urgent work. Here, we review the current promising regenerative technologies for kidney function replacement. Despite many approaches being applied in the different ways outlined in this work, obtaining an organ capable of performing complex functions such as osmoregulation, excretion or hormone synthesis is still a long-term goal. However, in the future, the efforts in these areas may eliminate the long waiting list for kidney transplants, providing a definitive solution for patients with end-stage renal disease.This study was supported by a grant from ALCER-TURIA, ASTELLAS and PRECIPITA CROWDFUNDING.Garcia-Dominguez, X.; Vicente Antón, JS.; Vera Donoso, CD.; Marco-Jiménez, F. (2017). Current Bioengineering and Regenerative Strategies for the Generation of Kidney Grafts on Demand. Current Urology Reports. 18(1):1-8. https://doi.org/10.1007/s11934-017-0650-6S18181Ott HC, Mathisen DJ. Bioartificial tissues and organs: are we ready to translate? Lancet. 2011;378:1977–8.Salvatori M, Peloso A, Katari R, Orlando G. Regeneration and bioengineering of the kidney: current status and future challenges. Curr Urol Rep. 2014;15:379.D’Agati VD. Growing new kidneys from embryonic cell suspensions: fantasy or reality? J Am Soc Nephrol. 2002;11:1763–6.Abouna GM. Organ shortage crisis: problems and possible solutions. Transplant Proc. 2008;40:34–8.Ozbolat IT, Yu Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng. 2013;60:691–9.Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng. 2011;13:27–53.Meeus F, Kourilsky O, Guerin AP, Gaudry C, Marchais SJ, London GM. Pathophysiology of cardiovascular disease in hemodialysis patients. Kidney Int Suppl. 2000;76:140–7.Jofré R. Factores que afectan a la calidad de vida en pacientes en prediálisis, diálisis y trasplante renal. Nefrologia. 1999;19:84–90.Villa G, Rodríguez-Carmona A, Fernández-Ortiz L, Cuervo J, Rebollo P, Otero A, et al. Cost analysis of the Spanish renal replacement therapy programme. Nephrol Dial Transplant. 2011;26:3709–14.MJ C, Marshall D, Dilworth M, Bottomley M, Ashton N, Brenchley P. Immunosuppression is essential for successful allogeneic transplantation of the metanephroi. Transplantation. 2009;88:151–9.Xinaris C, Yokoo T. Reforming the kidney starting from a single-cell suspension. Nephron Exp Nephrol. 2014;126:107.Nguyen DM, El-Serag HB. The epidemiology of obesity. Gastroenterol Clin N Am. 2010;39:1–7.Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med. 2013;19:646–51.Hariharan K, Kurtz A, Schmidt-Ott KM. Assembling kidney tissues from cells: the long road from organoids to organs. Front Cell Dev Biol. 2015;3:70.Montserrat N, Garreta E, Izpisua Belmonte JC. Regenerative strategies for kidney engineering, FEBS J. 2016; in press. doi: 10.1111/febs.13704 .Hammerman MR. Transplantation of renal primordia: renal organogenesis. Pediatr Nephrol. 2007;22:1991–8.Basma H, Soto-Gutiérrez A, Yannam GR, Liu L, Ito R, Yamamoto T, et al. Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology. 2009;136:990–9.Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27:275–80.Takahashi T, Lord B, Schulze PC, Fryer RM, Sarang SS, Gullans SR, et al. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation. 2003;107:1912–6.Zhang D, Jiang W, Liu M, Sui X, Yin X, Chen S, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res. 2009;19:429–38.Ledran MH, Krassowska A, Armstrong L, Dimmick I, Renström J, Lang R, et al. Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches. Cell Stem Cell. 2008;3:85–98.Yamanaka S, Yokoo T. Current bioengineering methods for whole kidney regeneration. Stem Cells Int. 2015;2015:724047.Xia Y, Nivet E, Sancho-Martinez I, Gallegos T, Suzuki K, Okamura D, et al. Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nat Cell Biol. 2013;15:1507–15.Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell. 2014;14:53–67.Simerman AA, Dumesic DA, Chazenbalk GD. Pluripotent muse cells derived from human adipose tissue: a new perspective on regenerative medicine and cell therapy. Clin Transl Med. 2014;3:12.Verdi J, Tan A, Shoae-Hassani A, Seifalian AM. Endometrial stem cells in regenerative medicine. J Biol Eng. 2014;8:20.Maeshima A, Yamashita S, Nojima Y. Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney. J Am Soc Nephrol. 2003;14:3138–46.Sagrinati C, Netti GS, Mazzinghi B, Lazzeri E, Liotta F, Frosali F, et al. Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys. J Am Soc Nephrol. 2006;17:2443–56.Oliver JA, Maarouf O, Cheema FH, Martens TP, Al-Awqati Q. The renal papilla is a niche for adult kidney stem cells. J Clin Invest. 2004;114:795–804.Kitamura S, Yamasaki Y, Kinomura M, Sugaya T, Sugiyama H, Maeshima Y, et al. Establishment and characterization of renal progenitor like cells from S3 segment of nephron in rat adult kidney. FASEB J. 2005;19:1789–97.Kitamura S, Sakurai H, Makino H. Single adult kidney stem/progenitor cells reconstitute three-dimensional nephron structures in vitro. Stem Cells. 2015;33:774–84.Li M, Suzuki K, Kim NY, Liu GH, Izpisua Belmonte JC. A cut above the rest: targeted genome editing technologies in human pluripotent stem cells. J Biol Chem. 2014;289:4594–9.Freedman BS, Brooks CR, Lam AQ, Fu H, Morizane R, Agrawal V, et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun. 2015;6:8715.Hu J, Lei Y, Wong WK, Liu S, Lee KC, He X, et al. Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors. Nucleic Acids Res. 2014;42:4375–90.Den Hartogh SC, Schreurs C, Monshouwer-Kloots JJ, Davis RP, Elliott DA, Mummery CL, et al. Dual reporter MESP1 mCherry/w-NKX2-5 eGFP/w hESCs enable studying early human cardiac differentiation. Stem Cells. 2015;33:56–67.Fukui A, Yokoo T. Kidney regeneration using developing xenoembryo. Curr Opin Organ Transplant. 2015;20:160–4.Chen J, Lansford R, Stewart V, Young F, Alt FW. RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. Proc Natl Acad Sci U S A. 1993;90:4528–32.Ueno H, Turnbull BB, Weissman IL. Two-step oligoclonal development of male germ cells. Proc Natl Acad Sci U S A. 2009;106:175–80.Fraidenraich D, Stillwell E, Romero E, Wilkes D, Manova K, Basson CT, et al. Rescue of cardiac defects in id knockout embryos by injection of embryonic stem cells. Science. 2004;306:247–52.Kobayashi T, Yamaguchi T, Hamanaka S, Kato-Itoh M, Yamazaki Y, Ibata M, et al. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell. 2010;142:787–99.Matsunari H, Nagashima H, Watanabe M, Umeyama K, Nakano K, Nagaya M, et al. Blastocyst complementation generates exogenic pancreas in vivo in apancreatic cloned pigs. Proc Natl Acad Sci U S A. 2013;110:4557–62.Espejel S, Roll GR, McLaughlin KJ, Lee AY, Zhang JY, Laird DJ, et al. Induced pluripotent stem cell-derived hepatocytes have the functional and proliferative capabilities needed for liver regeneration in mice. J Clin Invest. 2010;120:3120–6.Usui J, Kobayashi T, Yamaguchi T, Knisely AS, Nishinakamura R, Nakauchi H. Generation of kidney from pluripotent stem cells via blastocyst complementation. Am J Pathol. 2012;180:2417–26.Aggarwal S, Moggio A, Bussolati B. Concise review: stem/progenitor cells for renal tissue repair: current knowledge and perspectives. Stem Cells Transl Med. 2013;2:1011–9.Yokote S, Yokoo T. Organogenesis for kidney regeneration. Curr Opin Organ Transplant. 2013;18:186–90.Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233–43.Berthiaume F, Maguire TJ, Yarmush ML. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng. 2011;2:403–30.Badylak SF. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol. 2004;12:367–77.Badylak SF. The extracellular matrix as a biologic scaffold material. Biomaterials. 2007;28:3587–93.Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14:213–21.Yokoo T. Kidney regeneration with stem cells: an overview. Nephron Exp Nephrol. 2014;126(2):54.Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med. 2010;16:814–20.Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I, Ikonomou L, et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med. 2010;16:927–33.Montserrat N, Garreta E, Izpisua Belmonte JC. Regenerative strategies for kidney engineering. FEBS J. 2016. doi: 10.1111/febs.13704 .Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–85.Groll J, Boland T, Blunk T, Burdick JA, Cho DW, Dalton PD, et al. Biofabrication: reappraising the definition of an evolving field. Biofabrication. 2016;8:013001.Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016;34:422–34.Uzarski JS, Xia Y, Belmonte JC, Wertheim JA. New strategies in kidney regeneration and tissue engineering. Curr Opin Nephrol Hypertens. 2014;23:399–405.Humes HD, Buffington DA, MacKay SM, Funke AJ, Weitzel WF. Replacement of renal function in uremic animals with a tissue-engineered kidney. Nat Biotechnol. 1999;17:451–5.Chevtchik NV, Fedecostante M, Jansen J, Mihajlovic M, Wilmer M, Rüth M, Masereeuw R, Stamatialis D. Upscaling of a living membrane for bioartificial kidney device. Eur J Pharmacol. 2016.Humes HD, Sobota JT, Ding F, Song JH. A selective cytopheretic inhibitory device to treat the immunological dysregulation of acute and chronic renal failure. Blood Purif. 2010;29:183–90.Tumlin J, Wali R, Williams W, Murray P, Tolwani AJ, Vinnikova AK, et al. Efficacy and safety of renal tubule cell therapy for acute renal failure. J Am Soc Nephrol. 2008;19:1034–40.Yokoo T, Ohashi T, Shen JS, Sakurai K, Miyazaki Y, Utsunomiya Y, et al. Human mesenchymal stem cells in rodent whole-embryo culture are reprogrammed to contribute to kidney tissues. Proc Natl Acad Sci U S A. 2005;102(9):3296–300.Yokoo T, Fukui A, Ohashi T, Miyazaki Y, Utsunomiya Y, Kawamura T, et al. Xenobiotic kidney organogenesis from human mesenchymal stem cells using a growing rodent embryo. J Am Soc Nephrol. 2006;17:1026–34.Cooper DK. A brief history of cross-species organ transplantation. Proc (Bayl Univ Med Cent). 2012;25:49–57.Costa MR, Fischer N, Gulich B, Tönjes RR. Comparison of porcine endogenous retroviruses infectious potential in supernatants of producer cells and in cocultures. Xenotransplantation. 2014;21:162–73.Takeda S, Rogers SA, Hammerman MR. Differential origin for endothelial and mesangial cells after transplantation of pig fetal renal primordia into rats. Transpl Immunol. 2006;15:211–5.Yasutomi Y. Establishment of specific pathogen-free macaque colonies in Tsukuba Primate Research Center of Japan for AIDS research. Vaccine. 2010;28:75–7.Dekel B, Burakova T, Arditti FD, Reich-Zeliger S, Milstein O, Aviel-Ronen S, et al. Human and porcine early kidney precursors as a new source for transplantation. Nat Med. 2003;9:53–60.Hammerman MR. Classic and current opinion in embryonic organ transplantation. Curr Opin Organ Transplant. 2014;19:133–9.Rogers SA, Hammerman MR. Prolongation of life in anephric rats following de novo renal organogenesis. Organogenesis. 2004;1:22–5.•• Yokote S, Matsunari H, Iwai S, Yamanaka S, Uchikura A, Fujimoto E, et al. Urine excretion strategy for stem cell-generated embryonic kidneys. Proc Natl Acad Sci U S A. 2015;112:12980–5. This manuscript describes the developed-metanephros ability to produce urine when it was connected to the excretory system of the recipient organism. They demonstrated the potential of this technique as a possible solution to the kidneys shortage.Yokote S, Yokoo T, Matsumoto K, Utsunomiya Y, Kawamura T, Hosoya T. The effect of metanephroi transplantation on blood pressure in anephric rats with induced acute hypotension. Nephrol Dial Transplant. 2012;27:3449–55.Matsumoto K, Yokoo T, Yokote S, Utsunomiya Y, Ohashi T, Hosoya T. Functional development of a transplanted embryonic kidney: effect of transplantation site. J Nephrol. 2012;25:50–5.Yokote S, Yokoo T, Matsumoto K, Ohkido I, Utsunomiya Y, Kawamura T, et al. Metanephroi transplantation inhibits the progression of vascular calcification in rats with adenine-induced renal failure. Nephron Exp Nephrol. 2012;120:e32–40.Matsumoto K, Yokoo T, Matsunari H, Iwai S, Yokote S, Teratani T, et al. Xeno‐transplanted embryonic kidney provides a niche for endogenous mesenchymal stem cell differentiation into erythropoietin-producing tissue. Stem Cells. 2012;30:1228–35.Abrahamson DR. Glomerular development in intraocular and intrarenal graft of fetal kidney. Lab Investig. 1991;64:629–39.Woolf AS, Palmer SJ, Snow ML, Fine LG. Creation of functioning chimeric mammalian kidney. Kidney Int. 1990;38:991–7.Robert B, St John PL, Hyink DP, Abrahamson DR. Evidence that embryonic kidney cells expressing flk-1 are intrinsic, vasculogenic angioblasts. Am J Physiol. 1996;271:F744–53.Koseki C, Herzlinger D, Al-Awqati Q. Integration of embryonic nephrogenic cells carrying a reporter gene into functioning nephrons. Am J Physiol. 1991;261:C550–4.Rogers SA, Lowell JA, Hammerman NA, Hammerman MR. Transplantation of developing metanephroi into adult rats. Kidney Int. 1998;54:27–37.Barakat TL, Harrison RG. The capacity of fetal and neonatal renal tissues to regenerate and differentiate in a heterotropic allogenic subcutaneous tissue site in the rat. J Anat. 1971;110:393–407.Rogers SA, Liapis H, Hammerman MR. Transplantation of metanephroi across the major histocompatibility complex in rats. Am J Physiol Regul Integr Comp Physiol. 2001;280:R132–6.Vera-Donoso CD, García-Dominguez X, Jiménez-Trigos E, García-Valero L, Vicente JS, Marco-Jiménez F. Laparoscopic transplantation of metanephroi: a first step to kidney xenotransplantation. Actas Urol Esp. 2015;39:527–34.•• Marco-Jiménez F, Garcia-Dominguez X, Jimenez-Trigos E, Vera-Donoso CD, Vicente JS. Vitrification of kidney precursors as a new source for organ transplantation. Cryobiology. 2015;70:278–82. This study found that it is possible to create a long-term biobank of kidney precursors as an unlimited source of organs for transplantation and open new therapeutic possibilities for the patients with chronic renal failure.Garcia-Dominguez X, Vicente JS, Vera-Donoso C, Jimenez-Trigos E, Marco-Jiménez F. First steps towards organ banks: vitrification of renal primordia. CryoLetters. 2016;37:47–52.•• García-Domínguez X, Vera-Donoso CD, García-Valero L, Vicente JS, Marco-Jiménez F. Embryonic organ transplantation: the new era of xenotransplantation. In: Abdeldayem H, El-Kased AF, El-Shaarawy A, editors. Frontiers in transplantology. 2016. pp. 26–46. This manuscript describes for the first time the protocol for transplantation of embryonic kidneys as an organ replacement therapy using laparoscopic surgery.Bottomley MJ, Baicu S, Boggs JM, Marshall DP, Clancy M, Brockbank KG, et al. Preservation of embryonic kidneys for transplantation. Transplant Proc. 2005;37:280–4.Hara J, Tottori J, Anders M, Dadhwal S, Asuri P, Mobed-Miremadi M. Trehalose effectiveness as a cryoprotectant in 2D and 3D cell cultures of human embryonic kidney cells. Artif Cells Nanomed Biotechnol. 2016. doi: 10.3109/21691401.2016.1167698 .Xu Y, Zhao G, Zhou X, Ding W, Shu Z, Gao D. Biotransport and intracellular ice formation phenomena in freezing human embryonic kidney cells (HEK293T). Cryobiology. 2014;68:294–302
Imaginaries and Discourses. Research, Art and Creation 2019
Catálogo de Exposición del Máster en Investigación en Arte y Creación de la UCM. Muestra celebrada del 23 de septiembre al 14 de octubre de 2019 en la Sala de Exposiciones de la Facultad de Bellas Artes. C / Pintor el Greco 2, Ciudad Universitaria. 28040 Madrid. Comisariado de Javier Mañero Rodicio.Exhibition catalog of the Master in Art and Creation Research of the UCM. September 23 to October 14, 2019 in the Exhibition Hall of the Faculty of Fine Arts. C / Pintor El Greco 2, University City. 28040 Madrid. Curated by Javier Mañero Rodicio.Fac. de Bellas ArtesFALSEFacultad de Bellas Artes. Universidad Complutense de Madrid.pu