343 research outputs found

    Gaussian process autoregression for simultaneous proportional multi-modal prosthetic control with natural hand kinematics

    Get PDF
    Matching the dexterity, versatility, and robustness of the human hand is still an unachieved goal in bionics, robotics, and neural engineering. A major limitation for hand prosthetics lies in the challenges of reliably decoding user intention from muscle signals when controlling complex robotic hands. Most of the commercially available prosthetic hands use muscle-related signals to decode a finite number of predefined motions and some offer proportional control of open/close movements of the whole hand. Here, in contrast, we aim to offer users flexible control of individual joints of their artificial hand. We propose a novel framework for decoding neural information that enables a user to independently control 11 joints of the hand in a continuous manner-much like we control our natural hands. Toward this end, we instructed six able-bodied subjects to perform everyday object manipulation tasks combining both dynamic, free movements (e.g., grasping) and isometric force tasks (e.g., squeezing). We recorded the electromyographic and mechanomyographic activities of five extrinsic muscles of the hand in the forearm, while simultaneously monitoring 11 joints of hand and fingers using a sensorized data glove that tracked the joints of the hand. Instead of learning just a direct mapping from current muscle activity to intended hand movement, we formulated a novel autoregressive approach that combines the context of previous hand movements with instantaneous muscle activity to predict future hand movements. Specifically, we evaluated a linear vector autoregressive moving average model with exogenous inputs and a novel Gaussian process (gP) autoregressive framework to learn the continuous mapping from hand joint dynamics and muscle activity to decode intended hand movement. Our gP approach achieves high levels of performance (RMSE of 8°/s and ρ = 0.79). Crucially, we use a small set of sensors that allows us to control a larger set of independently actuated degrees of freedom of a hand. This novel undersensored control is enabled through the combination of nonlinear autoregressive continuous mapping between muscle activity and joint angles. The system evaluates the muscle signals in the context of previous natural hand movements. This enables us to resolve ambiguities in situations, where muscle signals alone cannot determine the correct action as we evaluate the muscle signals in their context of natural hand movements. gP autoregression is a particularly powerful approach which makes not only a prediction based on the context but also represents the associated uncertainty of its predictions, thus enabling the novel notion of risk-based control in neuroprosthetics. Our results suggest that gP autoregressive approaches with exogenous inputs lend themselves for natural, intuitive, and continuous control in neurotechnology, with the particular focus on prosthetic restoration of natural limb function, where high dexterity is required for complex movements

    Multifunctional peri-urban agriculture: Some ecosystem services of a sustainable olive grove

    Get PDF
    This study reports the influence of a sustainable management model which entails the recycling of urban wastewater and distribution by drip irrigation, recycling of polygenic carbon sources internal to the olive orchard (cover crops, pruning material) on yield, soil water holding capacity, soil biodiversity. Sustainable management practices were applied for a 15-year period in a 2-ha olive orchard located in an hilly peri-urban zone of southern Italy, where olive tree represents the dominant crop and has a key role inside the traditional landscape. A comparison between sustainable and conventional management (soil tillage, burning of the pruning residues, mineral fertilization, empirical irrigation) was carried out. This study suggests some guidelines of a sustainable management of peri-urban olive groves, with benefits to the whole agro-ecosystem stability and to the near town, recognizing the multifunctional role of agriculture that enhances the creation of synergies between urban and rural areas

    The olive tree: a paradigm for drought tolerance in Mediterranean climates

    Get PDF
    Olive trees (<i>Olea europaea</i> L.) are commonly grown in the Mediterranean basin where prolonged droughts may occur during the vegetative period. This species has developed a series of physiological mechanisms, that can be observed in several plants of the Mediterranean macchia, to tolerate drought stress and grow under adverse climatic conditions. These mechanisms have been investigated through an experimental campaign carried out over both irrigated and drought-stressed plants in order to comprehend the plant response under stressed conditions and its ability to recover. Experimental results show that olive plants subjected to water deficit lower the water content and water potentials of their tissues, establishing a particularly high potential gradient between leaves and roots, and stop canopy growth but not photosynthetic activity and transpiration. This allows the continuous production of assimilates as well as their accumulation in the various plant parts, so creating a higher root/leaf ratio if compared to well-watered plants. Active and passive osmotic adjustment due to the accumulation of carbohydrates (in particular mannitol and glucose), proline and other osmolytes have key roles in maintaining cell turgor and leaf activities. At severe drought-stress levels, the non-stomatal component of photosynthesis is inhibited and a light-dependent inactivation of the photosystem II occurs. Finally, the activities of some antioxidant enzymes involved in the scavenging of activated oxygen species and in other biochemical pathways increase during a period of drought. The present paper provides an overview of the driving mechanisms adopted by olive trees to face drought stress with the aim of better understanding plant-soil interactions

    How soil microbial biodiversity is modified by soil chemical parameters in differently managed olive orchards

    Get PDF
    Soil restoration is an important challenge of the 21st century, facing the increasing soil degradation, characterized by decline in quality and decrease in ecosystem goods and services. Several studies confirmed that sustainable orchard management practices might sequester atmospheric CO2 into soil, tree biomass and litter, enhancing soil organic carbon (SOC) stock and biodiversity. Higher biodiversity in ecosystems leads to greater stability and multifunctionality. In bacteria-plant interactions, both the bacteria and the plant profit from each other. These interactions play an important role in agriculture, positively affecting plant status and improving product quality. This study aimed at evaluating soil N/C parameters and microbial communities in soil, leaf (aerial part) and xylem sap between olive trees managed under sustainable practices for 17 years (i.e., no-tillage, drip irrigation with urban wastewater and recycling of polygenic carbon sources, like cover crops and pruning material) and trees managed under conventional ones (i.e., soil tillage, burning of pruning residues, mineral fertilization, rainfed), in a mature olive grove located in Southern Italy. In March 2017, samples of soil, leaf and xylem sap were collected in both treatments for DNA extraction and metagenomic analysis of the microbial communities. Soil samples were also collected for chemical and metabolic analyses. Results revealed that the long-term adoption of sustainable agricultural practices increased SOC, organic-N, and microbial biodiversity, with positive effects on plant growth protection and crop quality of olive plants

    Chemical, biochemical and microbiological properties of soils from abandoned and extensively cultivated olive orchards

    Get PDF
    The abandonment of olive orchards is a phenomenon of great importance triggered mainly by economic and social causes. The aim of this study was to investigate some chemical, biochemical and microbiological properties in a soil of a Southern olive grove abandoned since 25 years. In order to define the effect of the long-term land abandonment on soil properties, an adjacent olive grove managed according to extensive practices was taken as reference (essentially minimum tillage and no fertilization). Soil organic matter, total nitrogen and pH were significantly higher in the abandoned olive grove due to the absence of tillage and the natural inputs of organic matter at high C/N ratio which, inter alia, increased the number of cellulolytic bacteria and stimulated the activity of β-glucosidase, an indicator of a more advanced stage of soil evolution. The soil of the abandoned olive orchard showed a lower number of total bacteria and fungi and a lower microbial diversity, measured by means of the Biolog® method, as a result of a sort of specialization trend towards low quality organic substrates. From this point of view, the extensive cultivation management seemed to not induce a disturbance to microbiological communities

    Effects of post-harvest regulated deficit irrigation on carbohydrate and nitrogen partitioning, yield quality and vegetative growth of peach trees

    Get PDF
    Abstract The aim of the present work was to evaluate the effects of regulated deficit irrigation (RDI) applied in the post-harvest stage of peach trees. The 3-year trial was carried out in Italy (N 40°20¢, E 16°48¢) on mature peach plants (cv ''Springcrest'') trained to transverse Y. From bud break to harvest, irrigation was carried out by applying 100% ET c , while from harvest to early autumn, plants were separated into three groups and subjected to different irrigation treatments (100, 57 and 34% ET c ). The decrease in soil water content caused a reduction in the values of tissue water potential and gas exchange both in 57% ET c and 34% ET c treatments. RDI determined the reduction in the growth of waterspouts and lateral shoots but did not influence the growth of fruiting shoots. During the trial, no significant reductions in crop yield and quality were observed in the 57% ET c treatment, whereas about 1,100, 1,800 and 2,500 m 3 ha -1 of water were saved in the first, the second and the third year, respectively. In the second year of the trial, the use of RDI in the post-harvest stage determined carbohydrate and nitrogen accumulation in roots, branches, shoots and floral buds. The results demonstrate that, under scarce water supply conditions, a clear benefit can be obtained through the use of RDI during the post-harvest stage. This confirms the possibility to reduce the irrigation water by applying RDI during phenological stages less sensitive to water deficit without negatively affecting peach growth and yield

    Regulation of abscisic acid concentration in leaves of field-grown pearl millet (Pennisetum americanum (L.) Leeke): the role of abscisic acid export

    Get PDF
    Diurnal changes in the ABA concn. in leaves of droughted, field-grown plants of P. americanum were not always correlated with changes in bulk leaf water potential. A rapid decline in ABA content of the leaves following its rise to a peak level in mid-morning, was observed in several time-course studies despite continued water stress. The possibility that the reduction in ABA in leaves was due to an elevated rate of its export was examined by measuring ABA concn. in developing panicles (possible sinks for leaf-produced ABA) and in leaves, and by comparing the amounts of ABA in ungirdled leaves and in leaves heat-girdled at the base of the lamina to block export. ABA concn. in panicles generally paralleled those in leaves, though the peak concn. of ABA in the morning in panicles occurred later than in the leaves in some samplings. Although girdling initially increased ABA concn., it did not prevent a subsequent fall which generally paralleled the decline observed in untreated leaves. The decrease in ABA that occurred despite the block to export and despite continuing stress was attributed to changes in the synthesis or metabolism of ABA within the leaf. The probable rate of export of ABA from leaves, calculated from the changes in its concn. due to girdling, was highest at the time of most rapid ABA accumulation and declined thereafter. The percentage export of recently assimilated C declined similarly. However, the probable absolute rate of export of photosynthate, computed from stomatal conductance and [14C]-export measurements, was not uniquely related to that of AB
    corecore