117 research outputs found

    A Cross-Tissue Investigation of Molecular Targets and Physiological Functions of Nsun6 Using Knockout Mice

    Get PDF
    The 5-methylcytosine (m5C) modification on an mRNA molecule is deposited by Nsun2 and its paralog Nsun6. While the physiological functions of Nsun2 have been carefully studied using gene knockout (KO) mice, the physiological functions of Nsun6 remain elusive. In this study, we generated an Nsun6-KO mouse strain, which exhibited no apparent phenotype in both the development and adult stages as compared to wild-type mice. Taking advantage of this mouse strain, we identified 80 high-confident Nsun6-dependent m5C sites by mRNA bisulfite sequencing in five different tissues and systematically analyzed the transcriptomic phenotypes of Nsun6-KO tissues by mRNA sequencing. Our data indicated that Nsun6 is not required for the homeostasis of these organs under laboratory housing conditions, but its loss may affect immune response in the spleen and oxidoreductive reaction in the liver under certain conditions. Additionally, we further investigated T-cell-dependent B cell activation in KO mice and found that Nsun6 is not essential for the germinal center B cell formation but is associated with the formation of antibody-secreting plasma cells. Finally, we found that Nsun6-mediated m5C modification does not have any evident influence on the stability of Nsun6 target mRNAs, suggesting that Nsun6-KO-induced phenotypes may be associated with other functions of the m5C modification or Nsun6 protein

    Carnosic Acid Mitigates Early Brain Injury After Subarachnoid Hemorrhage: Possible Involvement of the SIRT1/p66shc Signaling Pathway

    Get PDF
    Carnosic acid (CA) has been reported to exhibit a variety of bioactivities including antioxidation, neuroprotection, and anti-inflammation; however, the impact of CA on subarachnoid hemorrhage (SAH) has never been elucidated. The current study was undertaken to explore the role of CA in early brain injury (EBI) secondary to SAH and the underlying mechanisms. Adult male Sprague-Dawley rats were perforated to mimic a clinical aneurysm with SAH. CA or vehicle was administered intravenously immediately after the SAH occurred. Mortality, SAH grade, neurologic function scores, brain water content, Evans blue extravasation, and the levels of reactive oxygen species (ROS) levels in the ipsilateral cortex were determined 24 h after the SAH occurred. Western blot, immunofluorescence, Fluoro-Jade C (FJC) and TUNEL staining were also performed. Our results showed that CA decreased ROS levels, alleviated brain edema and blood-brain barrier permeability, reduced neuronal cell death, and promoted neurologic function improvement. To probe into the potential mechanisms. We showed that CA increased SIRT1, MnSOD, and Bcl-2 expression, as well as decreased p66shc, Bax, and cleaved caspase-3 expression. Interestingly, sirtinol, a selective inhibitor of SIRT1, abolished the anti-apoptotic effects of CA. Taken together, these data revealed that CA has a neuroprotective role in EBI secondary to SAH. The potential mechanism may involve suppression of neuronal apoptosis through the SIRT1/p66shc signaling pathway. CA may provide a promising therapeutic regimen for management of SAH

    Functionalized Ordered Mesoporous Carbon for the Adsorption of Reactive Dyes

    No full text
    A novel ordered mesoporous carbon containing basic nitrogen functional groups was synthesized by ammonia-tailoring at a temperature of 1173 K and was applied for reactive dye adsorption. The basic nitrogencontaining functional groups incorporated into the carbon surface could enhance the dispersive interactions between the carbon and dye molecules due to the electron-donating effect as well as the electrostatic interactions between the carbon surface and the anions of the dyes. It was found tha this novel functionalized ordered mesoporous carbon could increase the adsorption capacity of reactive red 2 at 298 K by around 40 % and 100 % as compared with the unmodified carbon and a commercial activated carbon, respectively. The Freundlich isotherm showed better correlation with the experimental adsorption data of ammonia-tailored samples than the Langmuir isotherm due to the increased surface heterogeneity induced by the nitrogen-containing functional groups. Adsorption of reactive red 2 was an endothermic process as the adsorption capacity increased with increasing temperature. Low desorption efficiency revealed that the adsorption of reactive red 2 on the modified CMK-3 was extremely favorable, tending to be weakly reversible. © Springer Science+Business Media, LLC 2012

    Synthesis of SBA-15/carbon composite with an ink-bottle-like pore structure by a novel pulse CVD technique

    No full text
    A novel and easy post modification method, pulse chemical vapor deposition (pulse CVD), was developed to tailor the pore-opening of SBA-15 while largely keeping its surface area and pore volume. By using acetylene as carbon precursor and nitrogen as carrier gas, the pore-mouth of SBA-15 was effectively reduced from 8.1 nm to 5.1 nm within 5 min while maintaining the pore body at 8.1 nm. This ink-bottle-structured SBA-15/carbon composite only losses 12\% BET specific surface area and 16\% total pore volume, respectively. The SBA-15/carbon composite is highly hexagonally ordered and has similar particle morphology as the original SBA-15. The effect of three pore modification factors-the number of cycles of pulse CVD, the ratio of acetylene/nitrogen and the feeding time of carbon precursor, on the final pore structure of the SBA-15/carbon composite is also studied
    corecore