53 research outputs found

    Relations of blood lead levels to echocardiographic left ventricular structure and function in preschool children

    Get PDF
    Lead (Pb) has been proved to exert adverse effect on human cardiovascular system. However, the cardiotoxicity of Pb on children is still unclear. The aim of this study was to evaluate left ventricular (LV) structure and function, by using echocardiographic indices, in order to elucidate the effect of Pb on low-grade inflammation related to left ventricle in healthy preschool children. We recruited a total of 486 preschool children, 310 from Guiyu (e-waste-exposed area) and 176 from Haojiang (reference area). Blood Pb levels, complete blood counts, and LV parameters were evaluated. Associations between blood Pb levels and LV parameters and peripheral leukocyte counts were analyzed using linear regression models. The median blood level of Pb and the counts of white blood cells (WBCs), monocytes, and neutrophils were higher in exposed group. In addition, the exposed group showed smaller left ventricle (including interventricular septum, LV posterior wall, and LV mass index) and impaired LV systolic function (including LV fractional shortening and LV ejection fraction) regardless gender. After adjustment for confounding factors, elevated blood Pb levels were significantly associated with higher counts of WBCs and neutrophils, and lower levels of LV parameters. Furthermore, counts of WBCs, monocytes, and neutrophils were negatively correlated with LV parameters. Taken together, smaller left ventricle and impaired systolic function were found in e-waste-exposed children and associated with chronic low-grade inflammation and elevated blood Pb levels. It indicates that the heart health of e-waste-exposed children is at risk due to the long-term environmental chemical insults. (C) 2020 Elsevier Ltd. All rights reserved

    Elevated lead levels in relation to low serum neuropeptide Y and adverse behavioral effects in preschool children with e-waste exposure

    Get PDF
    As a neurotoxicant, lead (Pb) primarily affects central nervous system, and particularly impacts developing brain. This study explores the associations of blood Pb level and children's behavioral health. A total of 213 preschool children aged 3-7 years old were recruited from Guiyu (the e-waste-exposed area) and Haojiang (the reference area). The behavioral health of children was assessed using the 'behavioral symptoms' subscale of the Strengths and Difficulties Questionnaire (SDQ). Results showed that there was a significant difference in percent of children categorized as "at risk" between Guiyu (48.2%) and Haojiang (13.9%) (p = 5.00 mu g/dL (high) than those with blood Pb level < 5.00 mu g/dL (low). After adjusting for confounding factors, children with lower NPY levels were at higher risk of having behavioral difficulties. In conclusion, Pb exposure in e-waste-exposed areas may lead to decrease in serum NPY and increase in the risk of children's behavioral problems. In addition, NPY may mediate the association between Pb exposure and behavioral difficulties. (C) 2020 Elsevier Ltd. All rights reserved

    GP-VTON: Towards General Purpose Virtual Try-on via Collaborative Local-Flow Global-Parsing Learning

    Full text link
    Image-based Virtual Try-ON aims to transfer an in-shop garment onto a specific person. Existing methods employ a global warping module to model the anisotropic deformation for different garment parts, which fails to preserve the semantic information of different parts when receiving challenging inputs (e.g, intricate human poses, difficult garments). Moreover, most of them directly warp the input garment to align with the boundary of the preserved region, which usually requires texture squeezing to meet the boundary shape constraint and thus leads to texture distortion. The above inferior performance hinders existing methods from real-world applications. To address these problems and take a step towards real-world virtual try-on, we propose a General-Purpose Virtual Try-ON framework, named GP-VTON, by developing an innovative Local-Flow Global-Parsing (LFGP) warping module and a Dynamic Gradient Truncation (DGT) training strategy. Specifically, compared with the previous global warping mechanism, LFGP employs local flows to warp garments parts individually, and assembles the local warped results via the global garment parsing, resulting in reasonable warped parts and a semantic-correct intact garment even with challenging inputs.On the other hand, our DGT training strategy dynamically truncates the gradient in the overlap area and the warped garment is no more required to meet the boundary constraint, which effectively avoids the texture squeezing problem. Furthermore, our GP-VTON can be easily extended to multi-category scenario and jointly trained by using data from different garment categories. Extensive experiments on two high-resolution benchmarks demonstrate our superiority over the existing state-of-the-art methods.Comment: 8 pages, 8 figures, The IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR

    Anodic Oxidation Synthesis of One-Dimensional TiO 2

    Get PDF
    One-dimensional (1D) TiO2 micro/nanostructures have received more and more attentions because of their potential applications in environmental issues. This paper reviews the most recent activities in TiO2 nanostructures with an emphasis on the authors’ own results especially on those synthesized using anodic oxidation method. The review begins with a survey of the effects of fabrication methods and the experiment conditions on the obtained TiO2 nanostructures, and then focuses on their 1D nanostructures, including the syntheses, characterizations, formation mechanisms, photocatalytic, and field emission properties. Finally, we conclude this review with the perspectives and outlooks on the future developments in this field

    A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors

    Get PDF
    One-dimensional (1D) metal-oxide nanostructures are ideal systems for exploring a large number of novel phenomena at the nanoscale and investigating size and dimensionality dependence of nanostructure properties for potential applications. The construction and integration of photodetectors or optical switches based on such nanostructures with tailored geometries have rapidly advanced in recent years. Active 1D nanostructure photodetector elements can be configured either as resistors whose conductions are altered by a charge-transfer process or as field-effect transistors (FET) whose properties can be controlled by applying appropriate potentials onto the gates. Functionalizing the structure surfaces offers another avenue for expanding the sensor capabilities. This article provides a comprehensive review on the state-of-the-art research activities in the photodetector field. It mainly focuses on the metal oxide 1D nanostructures such as ZnO, SnO2, Cu2O, Ga2O3, Fe2O3, In2O3, CdO, CeO2, and their photoresponses. The review begins with a survey of quasi 1D metal-oxide semiconductor nanostructures and the photodetector principle, then shows the recent progresses on several kinds of important metal-oxide nanostructures and their photoresponses and briefly presents some additional prospective metal-oxide 1D nanomaterials. Finally, the review is concluded with some perspectives and outlook on the future developments in this area

    Association of prenatal exposure to PAHs with anti-Mullerian hormone (AMH) levels and birth outcomes of newborns

    Get PDF
    Background: Polycyclic aromatic hydrocarbons (PAHs) are chemicals that cause serious concerns because of their carcinogenicity and endocrine disrupting ability. Objective: In the current study, we studied how urinary PAH metabolites are related with the dose-effects of hormone levels and birth outcomes. Method: 163 pregnant women without health problems and 163 newborns were enrolled in hospitals in Guiyu (e-waste-exposed area) and Haojiang (reference area) from May 2016 to May 2017. Urine samples were collected to measure hydroxylated PAH (OH-PAH) metabolite levels. Umbilical cord blood was used for measurement of hormone levels. Anthropometric parameters of newborns, such as anogenital distance (AGD), were also measured. Results: Eight of ten urinary PAH metabolites in the exposed group were significantly higher than in the reference group. Levels of umbilical cord serum estradiol (E2) and testosterone (T) in the exposed group were significantly lower than those in the reference group. Birth weight was positively correlated with 2-OHFlu (2-hydroxyfluorene). Head circumference was negatively correlated with 9-OHFlu, 3-OHPhe (3-hydroxyphenanthrene), 9-OHPhe, and Ζ©OHFlu (sum of 2-OHFlu and 9-OHFlu). Serum E2 and T levels were negatively correlated with most OH-PAHs. In addition, we found that serum anti-MΓΌllerian hormone (AMH) level was positively correlated with AGD, and serum E2 level was negatively correlated with neonatal head circumference. Conclusions: PAH exposure in pregnant women may adversely affect the birth outcomes of newborns, especially AGD; and AMH may be involved in the process. Establishing a baseline for the relationship between PAH exposure and health is important to protect the health of mothers and children living in electronic waste (e-waste) recycling areas

    Ambient fine particulate matter inhibits innate airway antimicrobial activity in preschool children in e-waste areas

    Get PDF
    Ambient fine particulate matter (PM2.5) is a risk factor for respiratory diseases. Previous studies suggest that PM2.5 exposure may down-regulate airway antimicrobial proteins and peptides (AMPs), thereby accelerating airway pathogen infection. However, epidemiological research is scarce. Hence, we estimated the associations between individual PM2.5 chronic daily intake (CDI) and the levels of the airway AMP salivary agglutinin (SAG), as well as peripheral leukocyte counts and pro-inflammatory cytokines, of preschool children in Guiyu (an e-waste area) and Haojiang (a reference area located 31.6 km to the east of Guiyu). We recruited 581 preschool children from Guiyu and Haojiang, of which 222 were included in this study for a matching design (Guiyu: n = 110 vs. Haojiang: n = 112). Air PM2.5 pollution data was collected to calculate individual PM2.5 CDI. The mean concentration of PM2.5 in Guiyu was higher than in Haojiang, resulting in a higher individual PM2.5 CDI. Concomitantly, saliva SAG levels were lower in Guiyu children (5.05 ng/mL) than in Haojiang children (8.68 ng/mL), and were negatively correlated with CDI. Additionally, peripheral counts of white blood cells, and the concentrations of interleukin-8 and tumor necrosis factor-alpha, in Guiyu children were greater than in Haojiang children, and were positively associated with CDI. Similar results were found for neutrophils and monocytes. To our knowledge, this is the first study on the relationship between PM2.5 exposure and innate airway antimicrobial activity in children, in an e-waste area, showing that PM2.5 pollution may weaken airway antimicrobial activity by down-regulation of saliva SAG levels, which might accelerate airway pathogen infection in children
    • …
    corecore