237 research outputs found

    APETALA2 antagonizes the transcriptional activity of AGAMOUS in regulating floral stem cells in Arabidopsis thaliana.

    Get PDF
    APETALA2 (AP2) is best known for its function in the outer two floral whorls, where it specifies the identities of sepals and petals by restricting the expression of AGAMOUS (AG) to the inner two whorls in Arabidopsis thaliana. Here, we describe a role of AP2 in promoting the maintenance of floral stem cell fate, not by repressing AG transcription, but by antagonizing AG activity in the center of the flower. We performed a genetic screen with ag-10 plants, which exhibit a weak floral determinacy defect, and isolated a mutant with a strong floral determinacy defect. This mutant was found to harbor another mutation in AG and was named ag-11. We performed a genetic screen in the ag-11 background to isolate mutations that suppress the floral determinacy defect. Two suppressor mutants were found to harbor mutations in AP2. While AG is known to shut down the expression of the stem cell maintenance gene WUSCHEL (WUS) to terminate floral stem cell fate, AP2 promotes the expression of WUS. AP2 does not repress the transcription of AG in the inner two whorls, but instead counteracts AG activity

    Energy Efficient Cooperative Communications for Wireless Body Area Networks

    Get PDF
    It is expected that Wireless Body Area Network (WBAN) will greatly improve the quality of our life because of its myriad applications for our human beings. However, one of the challenges is to design energy efficient communication protocols to support the reliable communication as well as to prolong the network lifetime. Cooperative communications have the advantage of spatial diversity to combat multipath fading, thus improving the link reliability and boosting energy efficiency. In this thesis, we investigate the energy efficient cooperative communications for WBAN. We first analyze the outage performance of three transmission schemes, namely direct transmission, single relay cooperation, and multi-relay cooperation. To minimize the energy consumption, we then study the problem of optimal power allocation with the constraint of targeted outage probability. Two strategies of power allocation are considered: power allocation with and without posture state information. Simulation results verify the accuracy of the analysis and demonstrate that: 1) power allocation making use of the posture information can reduce the energy consumption; 2) within a possible range of the channel quality in WBAN, cooperative communication is more energy efficient than direct transmission only when the path loss between the transmission pair is higher than a threshold; and 3) for most of the typical channel quality due to the fixed transceiver locations on human body, cooperative communication is effective in reducing energy consumption

    PF-DMD: Physics-fusion dynamic mode decomposition for accurate and robust forecasting of dynamical systems with imperfect data and physics

    Full text link
    The DMD (Dynamic Mode Decomposition) method has attracted widespread attention as a representative modal-decomposition method and can build a predictive model. However, the DMD may give predicted results that deviate from physical reality in some scenarios, such as dealing with translation problems or noisy data. Therefore, this paper proposes a physics-fusion dynamic mode decomposition (PFDMD) method to address this issue. The proposed PFDMD method first obtains a data-driven model using DMD, then calculates the residual of the physical equations, and finally corrects the predicted results using Kalman filtering and gain coefficients. In this way, the PFDMD method can integrate the physics-informed equations with the data-driven model generated by DMD. Numerical experiments are conducted using the PFDMD, including the Allen-Cahn, advection-diffusion, and Burgers' equations. The results demonstrate that the proposed PFDMD method can significantly reduce the reconstruction and prediction errors by incorporating physics-informed equations, making it usable for translation and shock problems where the standard DMD method has failed

    The Government’s Environment Policy Index Impact on Recycler Behavior in Electronic Products Closed-Loop Supply Chain

    Get PDF
    We establish the model of multilevel closed-loop supply chain (CLSC) which included raw material supplier, manufacturer, distributor, retailer, and third-party recycler based on system dynamics (SD). Considering factors which influence recycler behavior-environmental policy index and recovery delay, we apply SD software—Vensim—to simulate CLSC model and study recycler behavior’s influence on the entire CLSC through calculating the bullwhip effect of all levels members order rate. Research shows that (1) the larger the environmental policy index, the greater the recycle proportion and the better the effect of weakening retailer’s order rate in forward supply chain, which however, increasingly, strengthen the reverse supply chain bullwhip effect, (2) the shorter the recovery delay, the better the effect of weakening the forward supply chain bullwhip effect and the longer the recovery delay, which increasingly weakens the reverse supply chain bullwhip effect, and (3) the effect of environmental policy index on the bullwhip effect of all levels members order rate is more significant than recovery delay
    • …
    corecore