29 research outputs found

    Optimizing inland port scale and function decisions: A bilevel programming approach

    Get PDF
    With the implementation of the Belt and Road Initiative, the inland ports planning is receiving more and more attention. In this work, we aim to determine the scale and function of different potential inland ports in a certain region while considering the cargo flow allocation schemes for the inland ports and seaports in cross-border trade. Unlike previous studies, we consider the dynamic interaction between local government and manufacturing enterprises in the inland port planning process. Based on this, we formulate a bilevel programming model for the considered inland port planning problem, where the upper-level focuses on the local government and the lower-level concentrates on the manufacturing enterprise. To solve the proposed model, we develop a hybrid heuristic algorithm by combining a genetic algorithm and an exact solution method. Furthermore, we conduct a case study of the inland ports planning for the Huaihai Economic Zone in China to verify the applicability of the proposed model and algorithm. The computational results demonstrate that the proposed optimization approach can effectively increase the cross-border transportation market share of inland ports within a limited investment amount and reduce the competition among these inland ports. Our case study also provides valuable management insights on inland port planning in terms of manufacturing enterprises weights, investment limit amount, scale effect, and cargo value weights

    Competitive Intensity Modulates the Pain Empathy Response: An Event-Related Potentials Study

    Get PDF
    Previous studies have widely reported that competition modulates an individual’s ability to empathize with pain experienced by others. What remains to be clarified, however, is how modulations in the intensity of competition might affect this type of empathy. To investigate this, we first used a Eriksen Flanker task to set different competitive intensity context (high competitive intensity, HCI; medium competitive intensity, MCI; low competitive intensity, LCI). Then we used a recognition task as a competitive task, in which we recorded event-related potentials (ERP) while participants viewed static images of body parts in painful and non-painful situations. Participants were informed that both sets of images depicted an opponent that they were required to play against in the recognition task that varied in levels of competitive intensity according to condition (HCI, MCI, and LCI). We observed an early N2 differentiation between pain and no-pain stimuli over the frontal area under MCI and LCI conditions, but this was not detected under HCI condition. Moreover, we observed a pattern of pain and no-pain differentiation for the late LPP over the frontal and centro-parietal regions under HCI, MCI, and LCI condition. As the pain empathy response is indexed by pain and no-pain differentiation, these results indicate a down-regulation of pain empathy response attributable to a high level of competition. With its very early onset, this effect appears to inhibit bottom-up processing of the ability to perceive pain experienced by an opponent. Our results provide neuroscientific evidence for a deficit in early automatic arousal in response to the pain of the opponent under the influence of high competitive intensity

    Some results on the partial orderings of block matrices

    No full text
    <p>Abstract</p> <p>Some results relating to the block matrix partial orderings and the submatrix partial orderings are given. Special attention is paid to the star ordering of a sum of two matrices and the minus ordering of matrix product. Several equivalent conditions for the minus ordering are established.</p> <p><b>Mathematics Subject Classification (2000): </b>15A45; 15A57</p

    Incentive Contract Design for the Water-Rail-Road Intermodal Transportation with Travel Time Uncertainty: A Stackelberg Game Approach

    No full text
    In the management of intermodal transportation, incentive contract design problem has significant impacts on the benefit of a multimodal transport operator (MTO). In this paper, we analyze a typical water-rail-road (WRR) intermodal transportation that is composed of three serial transportation stages: water, rail and road. In particular, the entire transportation process is planned, organized, and funded by an MTO that outsources the transportation task at each stage to independent carriers (subcontracts). Due to the variability of transportation conditions, the travel time of each transportation stage depending on the respective carrier&#8217;s effort level is unknown (asymmetric information) and characterized as an uncertain variable via the experts&#8217; estimations. Considering the decentralized decision-making process, we interpret the incentive contract design problem for the WRR intermodal transportation as a Stackelberg game in which the risk-neutral MTO serves as the leader and the risk-averse carriers serve as the followers. Within the framework of uncertainty theory, we formulate an uncertain bi-level programming model for the incentive contract design problem under expectation and entropy decision criteria. Subsequently, we provide the analytical results of the proposed model and analyze the optimal time-based incentive contracts by developing a hybrid solution method which combines a decomposition approach and an iterative algorithm. Finally, we give a simulation example to investigate the impact of asymmetric information on the optimal time-based incentive contracts and to identify the value of information for WRR intermodal transportation

    Fuzzy Reliability Optimization for 2-Hub Center Problem with Cluster-Based Policy and Application in Cross-Border Supply Chain Network Design Using TS Algorithm

    No full text
    As information and communication technology evolves and expands, business and markets are linked to form a complex international network, thus generating plenty of cross-border trading activities in the supply chain network. Through the observations from a typical cross-border supply chain network, this paper introduces the fuzzy reliability-oriented 2-hub center problem with cluster-based policy, which is a special case of the well-studied hub location problem (HLP). This problem differs from the classical HLP in the sense that (i) the hub-and-spoke (H&S) network is grouped into two clusters in advance based on their cross-border geographic features, and (ii) a fuzzy reliability optimization approach based on the possibility measure is developed. The proposed problem is first modeled through a mixed-integer nonlinear programming (MINLP) formulation that maximizes the reliability of the entire cross-border supply chain network. Then, some linearization techniques are implemented to derive a linear model, which can be efficiently solved by exact algorithms run by CPLEX for only small instances. To counteract the difficulty for solving the proposed problem in realistic-sized instances, a tabu search (TS) algorithm with two types of move operators (called “Swap I” and “Swap II”) is further developed. Finally, a series of numerical experiments based on the Turkish network and randomly generated large-scale datasets are set up to verify the applicability of the proposed model as well as the superiority of the TS algorithm compared to the CPLEX

    Uncertain Programming Model for the Cross-Border Multimodal Container Transport System Based on Inland Ports

    No full text
    The importance of inland ports in promoting current cross-border trade is increasingly recognized. In this work, we aim to design the entire network for the cross-border multimodal container transport system based on inland ports. Unlike previous studies, we consider strong uncertainty in cross-border transportation demand to be caused by a variety of realistic factors such as the global economic situation, trade policies among countries, and global epidemics, etc. To handle the demand uncertainty, we develop an uncertain programming model for the considered cross-border multimodal container transportation network design problem to minimize the expectation of the total costs, including carbon emissions, by imposing two types of chance constraints for capacity limitations. Under mild assumptions, we further convert the proposed uncertain model into its equivalent deterministic one, which can be solved by off-the-shelf solvers such as CPLEX, Gurobi, and Lingo. Finally, we illustrate the applicability of the proposed model by taking the Huaihai Economic Zone-Europe multimodal container transport system as a real-world case study. The computational results provide valuable suggestions and policy guidance regarding four issues: the inland port locations, the transportation route choices, the strategies for reducing the total cost, and the schemes for improving network performance against uncertain demand

    Table_1_Importance of species traits on individual-based seed dispersal networks and dispersal distance for endangered trees in a fragmented forest.docx

    No full text
    Although mutualistic network analyses have sparked a renewed interest in the patterns and drivers of network structures within communities, few studies have explored structural patterns within populations. In an endangered tree species population, plant individuals share their bird seed dispersers; however, the factors affecting individual interaction patterns are poorly understood. In this study, four individual-based networks were built for the endangered Chinese yew, Taxus chinensis, in a fragmented forest based on bird foraging type (swallowing and pecking networks) and habitat type (networks in a bamboo patch and an evergreen broad-leaved forest patch). Species-level network metrics (species degree and specialization, d’) were used to evaluate the effects of species traits (bird and plant traits) on species-level networks and dispersal distance for T. chinensis. It was revealed that the interaction networks between T. chinensis individuals and their bird partners were influenced by foraging type and the habitat of plant distribution. Compared to the other two networks, bird swallowing and bird–fruit networks in the evergreen broad-leaved patch habitat had higher nestedness and connectance but lower modules and specialization. Bird (body weight and wing and bill lengths) and plant traits (height, crop size, and cover) significantly affected species-level network metrics such as degree and specialization. Furthermore, seed dispersal distance was influenced by species traits and the species-level metrics of fruit–bird interaction networks. These results provide new insights into individual-based seed dispersal mutualistic networks of endangered plant species under habitat fragmentation. Moreover, these findings have relevant implications for conserving and managing individual endangered trees in increasingly disturbed ecosystems.</p

    Behavioral adaptation of sympatric rodents to early germination of oak acorns: radicle pruning and embryo excision

    Get PDF
    The seed germination schedule is a key factor affecting the food-hoarding behavior of animals and the seedling regeneration of plants. However, little is known about the behavioral adaptation of rodents to the rapid germination of acorns. In this study, we provided Quercus variabilis acorns to several rodent species to investigate how food-hoarding animals respond to seed germination. We found that only Apodemus peninsulae adopted embryo excision behavior to counteract seed germination, which is the first report of embryo excision in nonsquirrel rodents. We speculated that this species may be at an early stage of the evolutionary response to seed perishability in rodents, given the low rate of embryo excision in this species. On the contrary, all rodent species preferred to prune the radicles of germinating acorns before caching, suggesting that radicle pruning is a stable and more general foraging behavior strategy for food-hoarding rodents. Furthermore, scatter-hoarding rodents preferred to scatter-hoard and prune more germinating acorns, whereas they consumed more nongerminating acorns. Acorns with embryos excised rather than radicles pruned were much less likely to germinate than intact acorns, suggesting a behavioral adaptation strategy by rodents to the rapid germination of recalcitrant seeds. This study provides insight into the impact of early seed germination on plant–animal interactions

    Role of Cue Training, Context, and Stimulus Intensity on Fear Generalization in Humans

    No full text
    Fear generalization is a crucial mechanism underlying maladaptive behavior, but factors influencing this process are not fully understood. We investigated the effects of cue training and context on fear generalization and how cognitive rules influence responses to different conditions. We also examined the role of stimulus intensity in fear generalization to provide insight into fear generalization mechanisms. Participants (n = 104) completed a fear emotion task with two stages: acquisition and generalization testing. Subjective fear expectancy ratings were used as outcome measures. Participants who received single threat cue training exhibited stronger fear generalization responses than those who received discrimination training with threat and safe cues. Participants who received discrimination training and used linear rules had the strongest fear response to the largest stimulus. Therefore, a safe cue may mitigate fear generalization but could increase fear responses to more intense stimuli. Altering context did not change the fear generalization response because fear generalization is mainly governed by the association between the conditioned stimulus and the unconditioned fear stimulus. The present study emphasizes the multifaceted nature of fear generalization and the importance of examining multiple factors to understand this phenomenon. These findings elucidate fear learning and provide insights needed for effective interventions for maladaptive behavior

    Ecological succession drives the structural change of seed-rodent interaction networks in fragmented forests

    Get PDF
    While deforestation and fragmentation can cause massive species loss in forest ecosystems, forest regeneration can also drive successional changes in species composition. Although studies have sometimes documented the effects of these compositional changes on interspecific interactions, few studies have investigated changes in the structure of plant-animal networks. We investigated how interaction networks of assemblages of rodents and tree seeds changed with forest fragmentation and succession in a subtropical region. We compared seed-rodent interactions between 14 secondary forest patches that ranged in area from 2 to 58 ha, and from 10 to at least 100 years old, representing a successional gradient. We expected that deforestation and fragmentation would reduce seed production and diversify rodent communities, resulting in higher interaction strengths and connectivity, but weak nestedness (i.e., specialists interact with subsets of the species interaction of generalists). We measured the frequency of rodents eating and removing seeds (interaction strength) in each patch during 3 successive years, using seed tagging and infrared camera trapping, and calculated the properties of the seed-rodent networks. We found that the relative abundances of seeds and rodents changed with stand age not patch size, as did seed-rodent interactions: older patches produced more seeds, contained fewer individuals and species of rodents, and had seed-rodent networks with lower connectance and interaction strength, but higher nestedness. Connectance and interaction strength decreased with metabolic per capita seed availability (as measured by seed energy value); nestedness increased with seed richness, but decreased with rodent abundance. At species level, we found stand age and patch size showed significant effects on seed or rodent abundance of a few species. We also found seed coat thickness and starch contents had significant effects on network metrics. Our results suggest that during succession after deforestation, seed-rodent interactions in these sub-tropical forests change from a state dominated by high seed removal and highly connected seed-rodent networks to a state with more seeds and highly nested networks. From a management perspective of our study region, succession age, not fragment size, and network structure should be paid more attention so as to facilitate the restoration processes of degraded forests. Rodent management should be applied to protect native forest species and exclude incursive ones from farmlands and human residences at early succession stage
    corecore