93 research outputs found

    Oxide perovskite BaSnO3: A promising high-temperature thermoelectric material for transparent conducting oxides

    Full text link
    The new technology of energy conversion must be developed to ensure energy sustainability. Thermoelectric (TE) materials provide an effective means to solve the energy crisis. As a potential TE candidate, the TE properties of perovskite have received extensively attention. We here investigate the TE transport properties of the transparent conducting oxide (TCO) BaSnO3 by first-principles calculations. We find that the BaSnO3 perovskite exhibits outstanding dynamic and thermal stabilities, which provide excellent electronic and thermal transport properties simultaneously. These properties contribute to the remarkable Seebeck coefficient and power factor, which gives rise to the ZT of n-1.03 and p-3.64 at 900 K. Additionally, doping and nanostructure open prospects for effectively improving the TE properties of BaSnO3. Our work provides a basis for further optimizing the TE transport properties of cubic BaSnO3 and may have worthwhile practical significance for applying cubic perovskite to the high-temperature thermoelectric field.Comment: 29 pages,6 figures,1 tabl

    On the role of horizontal resolution over the Tibetan Plateau in the REMO regional climate model

    Get PDF
    A number of studies have shown that added value is obtained by increasing the horizontal resolution of a regional climate model to capture additional fine-scale weather processes. However, the mechanisms leading to this added value are different over areas with complicated orographic features, such as the Tibetan Plateau (TP). To determine the role that horizontal resolution plays over the TP, a detailed comparison was made between the results from the REMO regional climate model at resolutions of 25 and 50 km for the period 1980–2007. The model was driven at the lateral boundaries by the European Centre for Medium-Range Weather Forecasts Interim Reanalysis data. The experiments differ only in representation of topography, all other land parameters (e.g., vegetation characteristics, soil texture) are the same. The results show that the high-resolution topography affects the regional air circulation near the ground surface around the edge of the TP, which leads to a redistribution of the transport of atmospheric water vapor, especially over the Brahmaputra and Irrawaddy valleys—the main water vapor paths for the southern TP—increasing the amount of atmospheric water vapor transported onto the TP by about 5. This, in turn, significantly decreases the temperature at 2 m by > 1.5 °C in winter in the high-resolution simulation of the southern TP. The impact of topography on the 2 m temperature over the TP is therefore by influencing the transport of atmospheric water vapor in the main water vapor paths. © 2018 Springer-Verlag GmbH Germany, part of Springer Natur

    Seasonal temperature response over the Indochina Peninsula to a worst-case high-emission forcing: a study with the regionally coupled model ROM

    Get PDF
    Changes of surface air temperature (SAT) over the Indochina Peninsula (ICP) under the Representative Concentration Pathway (RCP) 8.5 scenario are projected for wet and dry seasons in the short-term (2020–2049) and long-term (2070–2099) future of the twenty-first century. A first analysis on projections of the SAT by the state-of-the-art regionally coupled atmosphere-ocean model ROM, including exchanges of momentum, heat, and water fluxes between the atmosphere (Regional Model) and ocean (Max Planck Institute Ocean Model) models, shows the following results: (i) In both seasons, the highest SAT occurs over the southern coastal area while the lowest over the northern mountains. The highest warming magnitudes are located in the northwestern part of the ICP. The regionally averaged SAT over the ICP increases by 2.61 °C in the wet season from short- to long-term future, which is slightly faster than that of 2.50 °C in the dry season. (ii) During the short-term future, largest SAT trends occur over the southeast and northwest ICP in wet and dry seasons, respectively. On regional average, the wet season is characterized by a significant warming rate of 0.22 °C decade−1, while it is non-significant with 0.11 °C decade−1for the dry season. For the long-term future, the rapid warming is strengthened significantly over whole ICP, with trends of 0.51 °C decade−1and 0.42 °C decade−1in wet and dry seasons,respectively. (iii) In the long-term future, more conspicuous warming is noted, especially in the wet season, due to the increased downward longwave radiation. Higher CO2concentrations enhancing the greenhouse effect can be attributed to the water vapor–greenhouse feedback, which, affecting atmospheric humidity and counter radiation, leads to the rising SAT

    Added value of the regionally coupled model ROM in the East Asian summer monsoon modeling

    Get PDF
    The performance of the regional atmosphere-ocean coupled model ROM (REMO-OASIS-MPIOM) is compared with its atmospheric component REMO in simulating the East Asian summer monsoon (EASM) during the time period 1980–2012 with the following results being obtained. (1) The REMO model in the standalone configuration with the prescribed sea surface conditions produces stronger low-level westerlies associated with the South Asian summer monsoon, an eastward shift of the western Pacific subtropical high (WPSH) and a wetter lower troposphere, which jointly lead to moisture pathways characterized by stronger westerlies with convergence eastward to the western North Pacific (WNP). As a consequence, the simulated precipitation in REMO is stronger over the ocean and weaker over the East Asian continent than in the observational datasets. (2) Compared with the REMO results, lower sea surface temperatures (SSTs) feature the ROM simulation with enhanced air-sea exchanges from the intensified low-level winds over the subtropical WNP, generating an anomalous low-level anticyclone and hence improving simulations of the low-level westerlies and WPSH. With lower SSTs, ROM produces less evaporation over the ocean, inducing a drier lower troposphere. As a result, the precipitation simulated by ROM is improved over the East Asian continent but with dry biases over the WNP. (3) Both models perform fairly well for the upper level circulation. In general, compared with the standalone REMO model, ROM improves simulations of the circulation associated with the moisture transport in the lower- to mid-troposphere and reproduces the observed EASM characteristics, demonstrating the advantages of the regionally coupled model ROM in regions where air-sea interactions are highly relevant for the East Asian climate

    MEI Kodierung der frühesten Notation in linienlosen Neumen

    Get PDF
    Das Optical Neume Recognition Project (ONRP) hat die digitale Kodierung von musikalischen Notationszeichen aus dem Jahr um 1000 zum Ziel – ein ambitioniertes Vorhaben, das die Projektmitglieder veranlasste, verschiedenste methodische Ansätze zu evaluieren. Die Optical Music Recognition-Software soll eine linienlose Notation aus einem der ältesten erhaltenen Quellen mit Notationszeichen, dem Antiphonar Hartker aus der Benediktinerabtei St. Gallen (Schweiz), welches heute in zwei Bänden in der Stiftsbibliothek in St. Gallen aufbewahrt wird, erfassen. Aufgrund der handgeschriebenen, linienlosen Notation stellt dieser Gregorianische Gesang den Forscher vor viele Herausforderungen. Das Werk umfasst über 300 verschiedene Neumenzeichen und ihre Notation, die mit Hilfe der Music Encoding Initiative (MEI) erfasst und beschrieben werden sollen. Der folgende Artikel beschreibt den Prozess der Adaptierung, um die MEI auf die Notation von Neumen ohne Notenlinien anzuwenden. Beschrieben werden Eigenschaften der Neumennotation, um zu verdeutlichen, wo die Herausforderungen dieser Arbeit liegen sowie die Funktionsweise des Classifiers, einer Art digitalen Neumenwörterbuchs
    • …
    corecore