2,044 research outputs found

    Ultrahard carbon film from epitaxial two-layer graphene

    Full text link
    Atomically thin graphene exhibits fascinating mechanical properties, although its hardness and transverse stiffness are inferior to those of diamond. To date, there hasn't been any practical demonstration of the transformation of multi-layer graphene into diamond-like ultra-hard structures. Here we show that at room temperature and after nano-indentation, two-layer graphene on SiC(0001) exhibits a transverse stiffness and hardness comparable to diamond, resisting to perforation with a diamond indenter, and showing a reversible drop in electrical conductivity upon indentation. Density functional theory calculations suggest that upon compression, the two-layer graphene film transforms into a diamond-like film, producing both elastic deformations and sp2-to-sp3 chemical changes. Experiments and calculations show that this reversible phase change is not observed for a single buffer layer on SiC or graphene films thicker than 3 to 5 layers. Indeed, calculations show that whereas in two-layer graphene layer-stacking configuration controls the conformation of the diamond-like film, in a multilayer film it hinders the phase transformation.Comment: Published online on Nature Nanotechnology on December 18, 201

    Calculating unreported confidence intervals for paired data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Confidence intervals (or associated standard errors) facilitate assessment of the practical importance of the findings of a health study, and their incorporation into a meta-analysis. For paired design studies, these items are often not reported. Since the descriptive statistics for such studies are usually presented in the same way as for unpaired designs, direct computation of the standard error is not possible without additional information.</p> <p>Methods</p> <p>Elementary, well-known relationships between standard errors and <it>p</it>-values were used to develop computation schemes for paired mean difference, risk difference, risk ratio and odds ratio.</p> <p>Results</p> <p>Unreported confidence intervals for large sample paired binary and numeric data can be computed fairly accurately using simple methods provided the <it>p</it>-value is given. In the case of paired binary data, the design based 2 × 2 table can be reconstructed as well.</p> <p>Conclusions</p> <p>Our results will facilitate appropriate interpretation of paired design studies, and their incorporation into meta-analyses.</p

    Modelling study of dimerization in mammalian defensins

    Get PDF
    BACKGROUND: Defensins are antimicrobial peptides of innate immunity functioning by non-specific binding to anionic phospholipids in bacterial membranes. Their cationicity, amphipathicity and ability to oligomerize are considered key factors for their action. Based on structural information on human β-defensin 2, we examine homologous defensins from various mammalian species for conserved functional physico-chemical characteristics. RESULTS: Based on homology greater than 40%, structural models of 8 homologs of HBD-2 were constructed. A conserved pattern of electrostatics and dynamics was observed across 6 of the examined defensins; models backed by energetics suggest that the defensins in these 6 organisms are characterized by dimerization-linked enhanced functional potentials. In contrast, dimerization is not energetically favoured in the sheep, goat and mouse defensins, suggesting that they function efficiently as monomers. CONCLUSION: β-defensin 2 from some mammals may work as monomers while those in others, including humans, work as oligomers. This could potentially be used to design human defensins that may be effective at lower concentrations and hence have therapeutic benefits

    Characteristics of transposable element exonization within human and mouse

    Get PDF
    Insertion of transposed elements within mammalian genes is thought to be an important contributor to mammalian evolution and speciation. Insertion of transposed elements into introns can lead to their activation as alternatively spliced cassette exons, an event called exonization. Elucidation of the evolutionary constraints that have shaped fixation of transposed elements within human and mouse protein coding genes and subsequent exonization is important for understanding of how the exonization process has affected transcriptome and proteome complexities. Here we show that exonization of transposed elements is biased towards the beginning of the coding sequence in both human and mouse genes. Analysis of single nucleotide polymorphisms (SNPs) revealed that exonization of transposed elements can be population-specific, implying that exonizations may enhance divergence and lead to speciation. SNP density analysis revealed differences between Alu and other transposed elements. Finally, we identified cases of primate-specific Alu elements that depend on RNA editing for their exonization. These results shed light on TE fixation and the exonization process within human and mouse genes.Comment: 11 pages, 4 figure

    Vomiting and wasting disease associated with hemagglutinating encephalomyelitis viruses infection in piglets in jilin, china

    Get PDF
    One coronavirus strain was isolated from brain tissues of ten piglets with evident clinical manifestations of vomiting, diarrhea and dyskinesia in Jilin province in China. Antigenic and genomic characterizations of the virus (isolate PHEV-JLsp09) were based on multiplex PCR and negative staining electron microscopy and sequence analysis of the Hemagglutinin-esterase (HE) gene. These piglets were diagnosed with Porcine hemagglutinating encephalomyelitis virus (PHEV)

    Protective Role for the Disulfide Isomerase PDIA3 in Methamphetamine Neurotoxicity

    Get PDF
    Methamphetamine abuse continues to be a worldwide problem, damaging the individual user as well as society. Only minimal information exists on molecular changes in the brain that result from methamphetamine administered in patterns typical of human abusers. In order to investigate such changes, we examined the effect of methamphetamine on the transcriptional profile in brains of monkeys. Gene expression profiling of caudate and hippocampus identified protein disulfide isomerase family member A3 (PDIA3) to be significantly up-regulated in the animals treated with methamphetamine as compared to saline treated control monkeys. Methamphetamine treatment of mice also increased striatal PDIA3 expression. Treatment of primary striatal neurons with methamphetamine revealed an up-regulation of PDIA3, showing a direct effect of methamphetamine on neurons to increase PDIA3. In vitro studies using a neuroblastoma cell line demonstrated that PDIA3 expression protects against methamphetamine-induced cell toxicity and methamphetamine-induced intracellular reactive oxygen species production, revealing a neuroprotective role for PDIA3. The current study implicates PDIA3 to be an important cellular neuroprotective mechanism against a toxic drug, and as a potential target for therapeutic investigations

    High-Resolution Melting Genotyping of Enterococcus faecium Based on Multilocus Sequence Typing Derived Single Nucleotide Polymorphisms

    Get PDF
    We have developed a single nucleotide polymorphism (SNP) nucleated high-resolution melting (HRM) technique to genotype Enterococcus faecium. Eight SNPs were derived from the E. faecium multilocus sequence typing (MLST) database and amplified fragments containing these SNPs were interrogated by HRM. We tested the HRM genotyping scheme on 85 E. faecium bloodstream isolates and compared the results with MLST, pulsed-field gel electrophoresis (PFGE) and an allele specific real-time PCR (AS kinetic PCR) SNP typing method. In silico analysis based on predicted HRM curves according to the G+C content of each fragment for all 567 sequence types (STs) in the MLST database together with empiric data from the 85 isolates demonstrated that HRM analysis resolves E. faecium into 231 “melting types” (MelTs) and provides a Simpson's Index of Diversity (D) of 0.991 with respect to MLST. This is a significant improvement on the AS kinetic PCR SNP typing scheme that resolves 61 SNP types with D of 0.95. The MelTs were concordant with the known ST of the isolates. For the 85 isolates, there were 13 PFGE patterns, 17 STs, 14 MelTs and eight SNP types. There was excellent concordance between PFGE, MLST and MelTs with Adjusted Rand Indices of PFGE to MelT 0.936 and ST to MelT 0.973. In conclusion, this HRM based method appears rapid and reproducible. The results are concordant with MLST and the MLST based population structure

    Cyclooxygenase-2 inhibition: effects on tumour growth, cell cycling and lymphangiogenesis in a xenograft model of breast cancer

    Get PDF
    Cyclooxygenase-2 (COX-2) is associated with poor-prognosis breast cancer. We used a nude mouse xenograft model to determine the effects of COX-2 inhibition in breast cancer. Oestrogen receptor (ER)-positive MCF7/HER2-18 and ER-negative MDAMB231 breast cancer cell lines were injected into nude mice and allowed to form tumours. Mice then received either chow containing Celecoxib (a COX-2 inhibitor) or control and tumour growth measured. Tumour proliferation, apoptosis, COX-2, lymphangiogenesis and angiogenesis were assessed by immunohistochemistry (IHC), Western blotting or Q-PCR. Celecoxib inhibited median tumour growth in MCF7/HER2-18 (58.7%, P=0.029) and MDAMB231 (46.3%, P=0.0002) cell lines compared to control. Cyclooxygenase-2 expression decreased following Celecoxib treatment (MCF7/HER2-18 median control 65.3% vs treated 22.5%, P=0.0001). Celecoxib increased apoptosis in MCF7/HER2-18 tumours (TUNEL 0.52% control vs 0.73% treated, P=0.0004) via inactivation of AKT (median pAKTser473 57.3% control vs 35.5% treated, P=0.0001 – confirmed at Western blotting). Q-PCR demonstrated decreased podoplanin RNA (lymphangiogenesis marker) in the MCF7/HER2-18 – median 2.9 copies treated vs 66.6 control (P=0.05) and MDAMB231-treated groups – median 160.7 copies vs 0.05 control copies (P=0.015), confirmed at IHC. Cyclooxygenase-2 is associated with high levels of activated AKTser473 and lymphangiogenesis in breast cancer. Cyclooxygenase-2 inhibition decreases tumour growth, and may potentially decrease recurrence, by inactivating AKT and decreasing lymphangiogenesis
    corecore