597 research outputs found

    The Tungsten-Based Plasma-Facing Materials

    Get PDF
    The plasma-facing materials in fusion reactors will face very extreme servicing condition such as high temperatures, high thermal loads, extreme irradiation conditions induced by high-energy neutron, and high fluences of high-flux and low-energy plasma. Tungsten is considered as the most promising material for plasma-facing components (PFCs) in the magnetic confinement fusion devices, due to its high melting temperature, high thermal conductivity, low swelling, low tritium retention, and low sputtering yield. However, some important shortcomings such as the irradiation brittleness and high ductility-brittle transition temperature of pure tungsten limit its application. Focusing on this issue, various W alloys with enhanced performance have been developed. Among them, nanoparticle dispersion strengthening such as oxide particle dispersion-strengthened (ODS-W) and carbide particle dispersion-strengthened (CDS-W) tungsten alloys and W fiber-reinforced Wf/W composites are promising. This chapter mainly reviews the preparation, microstructure, properties, regulation, and service performance evaluation of ODS-W, CDS-W, and Wf/W materials, as well as future possible development is proposed

    Analysis of tumor-related features of non-small cell lung cancer based on TCR repertoire workflow

    Get PDF
    Objective·To explore the immune-related characteristics of non-small cell lung cancer (NSCLC), discover potential tumor markers in V-J genes, and lay the foundation for establishing a TCR-antigen recognition prediction model.Methods·A total of 704 NSCLC samples were collected to establish a comprehensive T-cell receptor (TCR) repertoire analysis workflow. The upstream analysis included steps such as raw data processing, quality control, filtering, TCR sequence identification, and extraction. The downstream analysis included repertoire clone distribution, clone typing, V-J gene sharing, CDR3 distribution characteristics, and clone tracking. The sample clone distribution was analyzed by using indices such as Shannon-Weiner index and Chao1 index. Clone typing was performed based on the number of clone amplifications to explore differences among different types. The degree of V-J gene segment sharing was analyzed, and the sharing of low-frequency clone types was determined through clone amplification weight analysis of V-J genes by using two samples of papillary thyroid carcinoma. Finally, analysis of the distribution characteristics of V genes and high-frequency clone type CDR3, and clone tracking analysis were conducted to monitor changes in tumor immune clone frequencies before and after analysis, aiming to identify potential tumor markers.Results·① Significant differences were observed in clone distribution and clone typing among different NSCLC tissues, as well as among different ages and genders. ② Specific highly-shared V-J genes were identified in the analysis of V-J gene sharing, and non-normal distribution of high-clone V genes and amino acid high-frequency clone types were found in the CDR3 distribution analysis. ③ In the analysis of high-frequency clone type clone tracking, highly expressed or newly expressed high-frequency clone types were observed in NSCLC, suggesting that these clone types could serve as potential tumor-associated antigens or bind with CDR3 reference sequences of new antigens. ④ It was found that the expression frequency of TRBJ2-5 gene, originally low-expressed, significantly increased, indicating its potential role as a key low-frequency gene in tumor immune response.Conclusion·The TRAV21 and TRBV6.5 genes show high clone amplification in NSCLC and could serve as potential tumor biomarkers

    Measurement of the B0s→μ+μ− Branching Fraction and Effective Lifetime and Search for B0→μ+μ− Decays

    Get PDF
    A search for the rare decays Bs0→μ+μ- and B0→μ+μ- is performed at the LHCb experiment using data collected in pp collisions corresponding to a total integrated luminosity of 4.4  fb-1. An excess of Bs0→μ+μ- decays is observed with a significance of 7.8 standard deviations, representing the first observation of this decay in a single experiment. The branching fraction is measured to be B(Bs0→μ+μ-)=(3.0±0.6-0.2+0.3)×10-9, where the first uncertainty is statistical and the second systematic. The first measurement of the Bs0→μ+μ- effective lifetime, τ(Bs0→μ+μ-)=2.04±0.44±0.05  ps, is reported. No significant excess of B0→μ+μ- decays is found, and a 95% confidence level upper limit, B(B0→μ+μ-)<3.4×10-10, is determined. All results are in agreement with the standard model expectations.A search for the rare decays Bs0→μ+μ−B^0_s\to\mu^+\mu^- and B0→μ+μ−B^0\to\mu^+\mu^- is performed at the LHCb experiment using data collected in pppp collisions corresponding to a total integrated luminosity of 4.4 fb−1^{-1}. An excess of Bs0→μ+μ−B^0_s\to\mu^+\mu^- decays is observed with a significance of 7.8 standard deviations, representing the first observation of this decay in a single experiment. The branching fraction is measured to be B(Bs0→μ+μ−)=(3.0±0.6−0.2+0.3)×10−9{\cal B}(B^0_s\to\mu^+\mu^-)=\left(3.0\pm 0.6^{+0.3}_{-0.2}\right)\times 10^{-9}, where the first uncertainty is statistical and the second systematic. The first measurement of the Bs0→μ+μ−B^0_s\to\mu^+\mu^- effective lifetime, τ(Bs0→μ+μ−)=2.04±0.44±0.05\tau(B^0_s\to\mu^+\mu^-)=2.04\pm 0.44\pm 0.05 ps, is reported. No significant excess of B0→μ+μ−B^0\to\mu^+\mu^- decays is found and a 95 % confidence level upper limit, B(B0→μ+μ−)<3.4×10−10{\cal B}(B^0\to\mu^+\mu^-)<3.4\times 10^{-10}, is determined. All results are in agreement with the Standard Model expectations

    Cu&amp;Si Core–Shell Nanowire Thin Film as High-Performance Anode Materials for Lithium Ion Batteries

    No full text
    Cu@Si core–shell nanowire thin films with a Cu3Si interface between the Cu and Si were synthesized by slurry casting and subsequent magnetron sputtering and investigated as anode materials for lithium ion batteries. In this constructed core–shell architecture, the Cu nanowires were connected to each other or to the Cu foil, forming a three-dimensional electron-conductive network and as mechanical support for the Si during cycling. Meanwhile, the Cu3Si layer can enhance the interface adhesion strength of the Cu core and Si shell; a large amount of void spaces between the Cu@Si nanowires could accommodate the lithiation-induced volume expansion and facilitate electrolyte impregnation. As a consequence, this electrode exhibits impressive electrochemical properties: the initial discharge capacity and initial coulombic efficiency is 3193 mAh/g and 87%, respectively. After 500 cycles, the discharge capacity is about 948 mAh/g, three times that of graphite, corresponding to an average capacity fading rate of 0.2% per cycle

    Enhanced Erosion–Corrosion Resistance of Tungsten by Carburizing Using Spark Plasma Sintering Technique

    No full text
    The biggest obstacle for the application of tungsten as the target materials in the spallation neutron source is its serious corrosion in the coolant of flowing water. For this reason, W&ndash;Cr&ndash;C clad tungsten was developed by tungsten carburizing in a spark plasma sintering device, with superior corrosion resistance in the static immersion and electrochemical corrosion test. This work focused on its erosion and corrosion performance in a flowing water system, based upon test parameters simulated under the service conditions. W&ndash;Cr&ndash;C clad tungsten showed superior corrosion resistance to that of bare tungsten due to the corrosion form changing from the intergranular corrosion of bare tungsten to pitting corrosion of W&ndash;Cr&ndash;C coating. The corrosion rate of tungsten was as high as tenfold that of the coated sample at 20 &deg;C, and at most fourfold at 60 &deg;C after testing for 360 h. Effects of water velocity and temperature on pitting and intergranular corrosion were investigated in detail and their corresponding corrosion mechanisms were analyzed and discussed

    Mechanical Properties, Thermal Stability and Microstructures of W-Re-ZrC Alloys Fabricated by Spark Plasma Sintering

    No full text
    Tungsten materials, used as friction stir welding tools, undergo severe plastic deformation and even collapse at high operating temperatures. In order to improve the low-temperature toughness and high-temperature strength, W-10wt.%Re-0.5wt.%ZrC alloys were processed by high-energy ball milling and subsequent spark plasma sintering. Single solid-solution W-Re powders with typical body-centered cubic structures were achieved when the milling time increases to 50 h. The microhardness, tensile properties, thermal stability and microstructures of this sintered W-10wt.%Re-0.5wt.%ZrC alloys were investigated. Synergetic effects of the solute Re and nanosized dispersion particles induce improvements in low-temperature toughness and high-temperature strength. The alloy suffers ductile fracture at 300 &deg;C, which is about 400 &deg;C and 300 &deg;C lower than that of the spark plasma sintered pure W and W-0.5wt.%ZrC, respectively. Besides, this W-10wt.%Re-0.5wt.%ZrC has a high ultimate tensile strength of 818 MPa and uniform elongation of ~ 8.1% at 300 &deg;C. Moreover, the microstructures and hardness remain stable even after 1500 &deg;C anneal. Based on a detailed microstructure analysis, the mechanisms for the enhanced strength, low-temperature ductility and high thermal stability are proposed and discussed. Grain boundary mobility is impeded by the kinetics constraint through dispersed particles pinning and solute Re atoms dragging, which leads to improved thermal stability. The formation of Zr-C-O particles is most probably attributed to ZrC particles capturing and interacting with impurity oxygen during sintering

    CoV2-TCR: A web server for screening TCR CDR3 from TCR immune repertoire of COVID-19 patients and their recognized SARS-CoV-2 epitopes

    No full text
    Although multiple vaccines have been developed and widely administered, several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have been reported to evade immune responses and spread diffusely. Here, 108 RNA-seq files from coronavirus disease 2019 (COVID-19) patients and healthy donors (HD) were downloaded to extract their TCR immune repertoire by MiXCR. Those extracted TCR repertoire were compared and it was found that disease progression was related negatively with diversity and positively with clonality. Specifically, greater proportions of high-abundance clonotypes were observed in active and severe COVID-19 samples, probably resulting from strong stimulation of SARS-CoV-2 epitopes and a continued immune response in host. To investigate the specific recognition between TCR CDR3 and SARS-CoV-2 epitopes, we constructed an accurate classifier CoV2-TCR with an AUC of 0.967 in an independent dataset, which outperformed several similar tools. Based on this model, we observed a huge range in the number of those TCR CDR3 recognizing those different peptides, including 28 MHC-I epitopes from SARS-CoV-2 and 22 immunogenic peptides from SARS-CoV-2 variants. Interestingly, their proportions of high-abundance, low-abundance and rare clonotypes were close for each peptide. To expand the potential application of this model, we established the webserver, CoV2-TCR, in which users can obtain those recognizing CDR3 sequences from the TCR repertoire of COVID-19 patients based on the 9-mer peptides containing mutation site(s) on the four main proteins of SARS-CoV-2 variants. Overall, this study provides preliminary screening for candidate antigen epitopes and the TCR CDR3 that recognizes them, and should be helpful for vaccine design on SARS-CoV-2 variants

    Prediction and Analysis of Tensile Properties of Austenitic Stainless Steel Using Artificial Neural Network

    No full text
    Predicting mechanical properties of metals from big data is of great importance to materials engineering. The present work aims at applying artificial neural network (ANN) models to predict the tensile properties including yield strength (YS) and ultimate tensile strength (UTS) on austenitic stainless steel as a function of chemical composition, heat treatment and test temperature. The developed models have good prediction performance for YS and UTS, with R values over 0.93. The models were also tested to verify the reliability and accuracy in the context of metallurgical principles and other data published in the literature. In addition, the mean impact value analysis was conducted to quantitatively examine the relative significance of each input variable for the improvement of prediction performance. The trained models can be used as a guideline for the preparation and development of new austenitic stainless steels with the required tensile properties
    • …
    corecore