858 research outputs found

    Heavy Flavour Physics and CP Violation at LHCb: a Ten-Year Review

    Full text link
    Heavy flavour physics provides excellent opportunities to indirectly search for new physics at very high energy scales and to study hadron properties for deep understanding of the strong interaction. The LHCb experiment has been playing a leading role in the study of heavy flavour physics since the start of the LHC operations about ten years ago, and made a range of high-precision measurements and unexpected discoveries, which may have far-reaching implications on the field of particle physics. This review highlights a selection of the most influential physics results on CP violation, rare decays, and heavy flavour production and spectroscopy obtained by LHCb using the data collected during the first two operation periods of the LHC. The upgrade plan of LHCb and the physics prospects are also briefly discussed.Comment: Invited review for Frontiers of Physic

    Amorphous Alloy: Promising Precursor to Form Nanoflowerpot

    Get PDF
    Nanoporous copper is fabricated by dealloying the amorphous Ti2Cu alloy in 0.03 M HF electrolyte. The pore and ligament sizes of the nanoporous copper can be readily tailored by controlling the dealloying time. The as-prepared nanoporous copper provides fine and uniform nanoflowerpots to grow highly dispersed Au nanoflowers. The blooming Au nanoflowers in the nanoporous copper flowerpots exhibit both high catalytic activity and stability towards the oxidation of glucose, indicating that the amorphous alloys are ideal precursors to form nanoflowerpot which can grow functional nanoflowers

    Safety and tolerability of a single dose T0001 in Chinese healthy adult volunteers: a first-in-human ascending dose study

    Get PDF
    T0001 is the first mutant of etanercept with a higher affinity to tumor necrosis factor α (TNF-α) than etanercept. In order to investigate the safety and tolerability of T0001, a study was carried out in healthy Chinese subjects. A first-in-human, dose escalation study was conducted in healthy Chinese subjects. Fifty-six subjects were divided into six dose cohorts (10 mg, 20 mg, 35 mg, 50 mg, 65 mg and 75 mg) to receive a single subcutaneous injection of T0001. Safety and tolerability assessment were based on the records of vital signs, physical examinations, clinical laboratory tests, 12-lead electrocardiograms and adverse events (AEs). All subjects were in good compliance and none withdraw due to AEs. No serious AEs occurred. A total of twenty-three AEs in sixteen subjects were recorded, and eighteen of these AEs were believed to be related to T0001. The most frequently reported AEs were injection site reactions and white blood cell count increase. All these AEs were of mild to moderate intensity and most of them recovered spontaneously within 14 days. In this study, no dose-limiting toxicity was observed, and the maximum tolerated dose was identified as 75 mg. T0001 was considered safe and generally well tolerated at doses up to 75 mg in healthy Chinese volunteers

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‾ , W+bb‾ and W+cc‾ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓν , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of tt‾t\overline{t}, W+bb‾W+b\overline{b} and W+cc‾W+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays W→ℓνW\rightarrow\ell\nu, where ℓ\ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions
    • …
    corecore