41 research outputs found

    A Novel Equivalent Model of Active Distribution Networks Based on LSTM

    Get PDF

    Epithelial Migration and Non-adhesive Periderm Are Required for Digit Separation during Mammalian Development.

    Get PDF
    The fusion of digits or toes, syndactyly, can be part of complex syndromes, including van der Woude syndrome. A subset of van der Woude cases is caused by dominant-negative mutations in the epithelial transcription factor Grainyhead like-3 (GRHL3), and Grhl3-/-mice have soft-tissue syndactyly. Although impaired interdigital cell death of mesenchymal cells causes syndactyly in multiple genetic mutants, Grhl3-/- embryos had normal interdigital cell death, suggesting alternative mechanisms for syndactyly. We found that in digit separation, the overlying epidermis forms a migrating interdigital epithelial tongue (IET) when the epithelium invaginates to separate the digits. Normally, the non-adhesive surface periderm allows the IET to bifurcate as the digits separate. In contrast, in Grhl3-/- embryos, the IET moves normally between the digits but fails to bifurcate because of abnormal adhesion of the periderm. Our study identifies epidermal developmental processes required for digit separation

    Underestimating Appreciation for Partial Help

    No full text

    Comparison of alternative remediation technologies for recycled gravel contaminated with heavy metals

    No full text
    To evaluate the effects of different remediation methods on heavy metals contaminated recycled gravel, three immobilization agents (monopotassium phosphate, lime, nano-iron) and two mobilization agents (glyphosate, humic acid (HA)) were studied and compared. Results indicated that nano-iron powder was found to be more effective to immobilize Zn, Cu, Pb and Cd. Meanwhile, glyphosate presents a higher mobilization effect than HA with removal rates of about 66.7% for Cd, more than 80% for Cr, Cu and Zn, and the highest removal percentage of 85.9% for Cr. After the mobilization by glyphosate, the leaching rates of Zn, Cu and Cr were about 0.8%, and below 0.2% for Pb and Cd. The leaching rates after nano-iron powder treatment were 1.18% for Zn, 0.96% for Cr, 0.61% for Cu, 0.45% for Pb and Cd not detected. The formation and disappearance of metal (Zn/Cu/Cr/Pb/Cd) compounds were firmly confirmed through X-ray diffraction and scanning electron microscopy analyses on crystalline phases and morphological surface structures

    Absence of ductal hyper-keratinization in mouse age-related meibomian gland dysfunction (ARMGD).

    Get PDF
    Meibomian gland dysfunction (MGD) is frequent with aging and is the primary cause of dry eye disease, the most prevalent ocular complaint. We used a novel 3-D reconstruction technique, immunofluorescent computed tomography (ICT), to characterize meibomian gland keratinization and cell proliferation in a mouse model of age-related meibomian gland dysfunction (ARMGD). To visualize the changes associated with ARMGD, 5-month and 2-year old mouse eyelids were 3-D reconstructed by ICT using antibodies to cytokeratin (CK) 1, 5 and 6 and the proliferation marker Ki67. We quantified total gland, ductal and lipid volume from the reconstructions, observing a dramatic decrease in old glands. In young glands, proliferative ductules suggest a potential site of acinar progenitors that were found to be largely absent in aged, atrophic glands. In the aged mouse, we observed an anterior migration of the mucocutaneous junction (MCJ) and an absence of hyper-keratinization with meibomian gland atrophy. Thus, we propose that changes in the MCJ and glandular atrophy through a loss of meibocyte progenitors are most likely responsible for ARMGD and not ductal hyper-keratinization and gland obstruction

    The regulation of ovary and conceptus on the uterine natural killer cells during early pregnancy

    No full text
    Abstract Uterine natural killer (uNK) cells are short-lived, terminally differentiated and the most abundant lymphocytes in the uterus which play a crucial role in the spiral arteriole modification and establishment of successful pregnancy. Dysregulation of uNK cells has been linked to gestational implications such as recurrent pregnancy loss, preeclampsia and fetal growth retardation. There is evidence showing that progesterone and estrogen can regulate the recruitment, proliferation, differentiation and function of uNK cells via direct action on intracellular nuclear receptors or through intermediary cells in the uterus during early pregnancy. As the deepening of related research in this field, the role of conceptus in such regulation has received extensive attention, it utilizes endocrine signaling (hCG), juxtacrine signaling (HLA-C, HLA-E, HLA-G) and paracrine signaling (cytokines) to facilitate the activities of uNK cells. In addition, under the influence of ovarian hormones, conceptus can increase expression of PIBF and HLA-G molecules to reduce cytotoxicity of uNK cells and promote angiogenesis. In this review, we aim to concentrate on the novel findings of ovarian hormones in the regulation of uNK cells, emphasize the regulatory role of conceptus on uNK cells and highlight the proposed issues for future research in the field
    corecore