1,019 research outputs found

    Localization of U(1)U(1) gauge field by non-minimal coupling with gravity

    Full text link
    In this paper, we investigate the localization of the U(1)U(1) gauge field on Randall-Sundrum-like braneworld models. The localization of the U(1)U(1) gauge field is important because it plays a fundamental role in the branworld theories. To achieve the localization, we propose a novel action with a non-minimal coupling between the U(1)U(1) gauge field and gravity. We find that the mass spectrum of the gauge field is continuous, without any gap between the zero-mass mode and the massive modes, and except for the zero-mass mode all the massive modes are not localized on the brane. Furthermore, the massive modes have negative squared masses, indicating they are tachyonic. Our analysis can be applied to a wide range of thin and thick braneworld scenarios, provided that the five-dimensional spacetime is asymptotically anti-de Sitter.Comment: 10 pages, 2 figures, Accepted by JCA

    Scanning tunneling microscopy study of the possible topological surface states in BiTeCl

    Full text link
    Recently, the non-centrosymmetric bismuth tellurohalides such as BiTeCl are being studied as possible candidates of topological insulators. While some photoemission studies showed that BiTeCl is an inversion asymmetric topological insulator, others showed that it is a normal semiconductor with Rashba splitting. Meanwhile, first-principle calculationsfailed to confirm the existence of topological surface states in BiTeCl so far. Therefore, the topological nature of BiTeCl requires further investigation. Here we report low temperature scanning tunneling microscopy study on the surface states of BiTeCl single crystals. On the tellurium-terminated surfaces with low defect density, strong evidences for topological surface states are found in the quasi-particle interference patterns generated by the scattering of these states, both in the anisotropy of the scattering vectors and the fast decay of the interference near step edges. Meanwhile, on samples with much higher defect densities, we observed surface states that behave differently. Our results help to resolve the current controversy on the topological nature of BiTeCl.Comment: 13pages,4figure

    Blocking the ZZ domain of sequestosome1/p62 suppresses myeloma growth and osteoclast formation in vitro and induces dramatic bone formation in myeloma-bearing bones in vivo

    Get PDF
    We reported that p62 (sequestosome 1) serves as a signaling hub in bone marrow stromal cells (BMSCs) for the formation of signaling complexes, including NFκB, p38MAPK and JNK, that are involved in the increased osteoclastogenesis and multiple myeloma (MM) cell growth induced by BMSCs that are key contributors to multiple myeloma bone disease (MMBD), and demonstrated that the ZZ domain of p62 (p62-ZZ) is required for BMSC enhancement of MMBD. We recently identified a novel p62-ZZ inhibitor, XRK3F2, which inhibits MM cell growth and BMSC growth enhancement of human MM cells. In the current study, we evaluate the relative specificity of XRK3F2 for p62-ZZ, characterize XRK3F2's capacity to inhibit growth of primary MM cells and human MM cell lines, and test the in vivo effects of XRK3F2 in the immunocompetent 5TGM1 MM model. We found that XRK3F2 induces dramatic cortical bone formation that is restricted to MM containing bones and blocked the effects and upregulation of tumor necrosis factor alpha (TNFα), an osteoblast (OB) differentiation inhibitor that is increased in the MM bone marrow microenvironment and utilizes signaling complexes formed on p62-ZZ, in BMSC. Interestingly, XRK3F2 had no effect on non-MM bearing bone. These results demonstrate that targeting p62 in MM models has profound effects on MMBD

    Relationship between Serum Levels of OPG and TGF- β

    Get PDF
    The objective of this study was to investigate the relationship between serum levels of OPG, TGF-β1, and TGF-β2 and BMD decrease rate (BDR) in native Chinese women. This cross-sectional study was performed on 465 healthy native Chinese women aged 35–80 years. Serum levels of OPG, TGF-β1, and TGF-β2 were determined. BDR was measured by DXA at the posteroanterior spine, hip, and distal forearm. At all skeletal sites tested, there was a negative correlation between BDR and serum levels of both OPG (r=−0.122 to –0.230, all P = 0.007–0.000) and TGF-β2 (r=−0.100 to –0.173, all P = 0.029–0.000) and a positive correlation between BDR and serum TGF-β1 (r=0.245−0.365, all P=0.000). After adjustment for age and BMI, there were no statistically significant correlations between serum levels of OPG or TGF-β2 and BDR. However, statistically significant correlations between serum TGF-β1 and BDR at the lumbar spine and ultradistal forearm remained. Multiple linear regression stepwise analysis showed that serum OPG could explain 1.4–3.7% of BDR variation. Serum TGF-β1 was a positive determinant of BDR and could explain 5.3–13.3% of BDR variation

    Recent Advances in Fragment-Based QSAR and Multi-Dimensional QSAR Methods

    Get PDF
    This paper provides an overview of recently developed two dimensional (2D) fragment-based QSAR methods as well as other multi-dimensional approaches. In particular, we present recent fragment-based QSAR methods such as fragment-similarity-based QSAR (FS-QSAR), fragment-based QSAR (FB-QSAR), Hologram QSAR (HQSAR), and top priority fragment QSAR in addition to 3D- and nD-QSAR methods such as comparative molecular field analysis (CoMFA), comparative molecular similarity analysis (CoMSIA), Topomer CoMFA, self-organizing molecular field analysis (SOMFA), comparative molecular moment analysis (COMMA), autocorrelation of molecular surfaces properties (AMSP), weighted holistic invariant molecular (WHIM) descriptor-based QSAR (WHIM), grid-independent descriptors (GRIND)-based QSAR, 4D-QSAR, 5D-QSAR and 6D-QSAR methods
    corecore