12 research outputs found

    The role of kinetic inductance on the performance of YBCO SQUID magnetometers

    Get PDF
    Inductance is a key parameter when optimizing the performance of superconducting quantum interference device (SQUID) magnetometers made from the high temperature superconductor YBa2Cu3O7-x (YBCO) because lower SQUID inductance L leads to lower flux noise, but also weaker coupling to the pickup loop. In order to optimize the SQUID design, we combine inductance simulations and measurements to extract the different inductance contributions, and measure the dependence of the transfer function V Φ and flux noise on L. A comparison between two samples shows that the kinetic inductance contribution varies strongly with film quality, hence making inductance measurements a crucial part of the SQUID characterization. Thanks to the improved estimation of the kinetic inductance contribution, previously found discrepancies between theoretical estimates and measured values of V Φ and could to a large extent be avoided. We then use the measurements and improved theoretical estimations to optimize the SQUID geometry and reach a noise level of = 44 fT/√SRC="sustab6014ieqn4.gi for the best SQUID magnetometer with a 8.6 mm 7 9.2 mm directly coupled pickup loop. Lastly, we demonstrate a method for reliable one-time sensor calibration that is constant in a temperature range of several kelvin despite the presence of temperature dependent coupling contributions, such as the kinetic inductance. The found variability of the kinetic inductance contribution has implications not only for the design of YBCO SQUID magnetometers, but for all narrow linewidth SQUID-based devices operated close to their critical temperature

    Development of high-Tc SQUID magnetometers for on-scalp MEG

    Get PDF
    This thesis describes the development of high critical temperature superconducting quantum interference device (high-Tc SQUID) magnetometers based on bicrystal grain boundary and nanowire junctions for the potential use in on-scalp magnetoencephalography (MEG), which is a new generation MEG technique with reduced sensor-to-subject standoff distances.MEG is a method of mapping neural dynamics in the human brain by recording the magnetic fields produced by neural currents. Its passive and non-contact nature allows doctors and neuroscientists to safely and effectively carry out clinical diagnoses and scientific research on the human brain. State-of-the-art MEG systems utilize low-Tc SQUID sensors with sensitivities of 1--5 fT/√Hz down to 1 Hz to measure the extremely tiny biomagnetic fields (~100 fT) from the brain. However, low-Tc SQUIDs require liquid helium cooling to reach their operating temperature

    A liquid nitrogen-cooled cryostat for multichannel HTS magnetoencephalography

    Get PDF
    Magnetoencephalography (MEG) is a functional neuroimaging technology used in neuroscience as well as in the diagnosis and treatment of brain disorders like epilepsy and for surgical planning. In MEG neural activity is measured by sensing the weak magnetic fields (~10s to 100s of femtotesla) that are generated by neural currents in the brain. Highly sensitive magnetic field sensors are required for MEG. Today’s commercial systems therefore employ liquid helium-cooled low-Tc SQUIDs. With advances in high-temperature superconducting (HTS) technology high-Tc SQUIDs have become a serious alternative. Due to the higher operating temperature they can be placed closer to the head and therefore measure higher magnitude signals than low-Tc SQUIDs that must record from further away – thus enabling them to overcome the typically higher noise compared to their commercial counterparts [1]. We have developed a liquid nitrogen-cooled cryostat for a 7-channel HTS MEG system. The cryostat is designed for minimum distance between the cold (~77 K) SQUIDs and the head of a subject at room temperature. With superinsulation around the nitrogen vessel and a small vacuum space between the sensors and a thin window, we can achieve minimum sensor-to-head distances of less than 3 mm. The magnetometers are arranged in a dense hexagonal pattern for high spatial sampling of a small area of the head (≈ 15 cm2). The outer sensors are tilted towards the middle to align them to the average adult head’s curvature. The sensor tilt combined with a thin, curved window ensures minimal distance to the head for all sensors. The system employs 10 mm × 10 mm bicrystal dc SQUIDs made from YBa2Cu3O7-x with direct injection feedback (to minimize crosstalk [2]). The SQUIDs are thermally connected to liquid nitrogen via a sapphire fixture. To control temperature the nitrogen reservoir can be pumped on. The cryostat achieves high temperature stability (18h with a single filling). We will present the design and performance of the cryostat and show results from measurements on a head phantom. [1] Schneiderman, J. Neurosci. Methods 222, 42-46 (2014) [2] Ruffieux, Supercond. Sci. Technol. 30, 054006 (2017

    High-Tc SQUID vs. low-Tc SQUID-based recordings on a head phantom: Benchmarking for magnetoencephalography

    No full text
    We explore the potential that high critical-temperature (high-Tc) superconducting quantum interference device (SQUID) technology has for magnetic recordings of brain activity, i.e., magnetoencephalography (MEG). To this end, we performed a series of benchmarking experiments to directly compare recordings with a commercial (low-Tc SQUID-based) 306-channel MEG system (Elekta Neuromag TRIUX, courtesy of NatMEG) and a single channel high-Tc SQUID system. The source on which we recorded is a head phantom including 32 artificial current dipoles housed inside a half-spherical shell (courtesy Elekta Oy) for calibrating MEG systems. The high-Tc SQUID magnetometer consisted of a single layer YBa2Cu3O7-x (YBCO) film on a 10 mm 7 10 mm bicrystal substrate with a magnetic field sensitivity of ~40 fT/Hz down to 10 Hz. We recorded serial activations of eight tangential current dipoles located at different depths from the surface of the head phantom. Results indicate that our individual high-Tc SQUID demonstrated signal-to-noise ratios (SNRs) about 7-14 times lower than that of similarly-positioned low-Tc SQUIDs in a commercial MEG system. Only considering single-channel SNR, high-Tc SQUIDs with resolution better than 18 fT/Hz would be required to outperform the low-Tc system for shallow dipole sources. This work demonstrates a proof of principle study for future multichannel high-Tc MEG system development

    Feedback solutions for low crosstalk in dense arrays of high-T-c SQUIDs for on-scalp MEG

    No full text
    Magnetoencephalography (MEG) systems based on a dense array of high critical temperature (high-T-c) superconducting quantum interference devices (SQUIDs) can theoretically outperform a state-of-the-art MEG system. On the way towards building such a multichannel system, we evaluate feedback methods suitable for use in dense high-T-c SQUID arrays where the sensors are in very close proximity to the head (on-scalp MEG). We test on-chip superconducting coils and direct injection of the feedback current into the SQUID loop as alternatives to the wire-wound copper coils commonly used in single-channel high-T-c SQUID-based MEG systems. For the evaluation, we have performed coupling, noise, and crosstalk measurements. We conclude that direct injection is the optimal solution for dense on-scalp MEG as it gives crosstalk below 0.5% even between SQUIDs whose pickup loops are within 0.8 mm of one another. Further, this solution provides sufficient flux coupling without adding additional noise. Finally, it does not compromise the standoff distance, which is important for on-scalp MEG

    Improved coupling of nanowire-based high-T-c SQUID magnetometers-simulations and experiments

    No full text
    Superconducting quantum interference devices (SQUIDs) based on high critical-temperature superconducting nanowire junctions were designed, fabricated, and characterized in terms of their potential as magnetometers for magnetoencephalography (MEG). In these devices, the high kinetic inductance of junctions and the thin film thickness (50 nm) pose special challenges in optimizing the field coupling. The high kinetic inductance also brings difficulties in reaching a low SQUID noise. To explore the technique for achieving a high field sensitivity, single-layer devices with a directly connected pickup loop and flip-chip devices with an inductively coupled flux transformer using a two-level coupling approach were fabricated and tested. Two-level coupling is an approach designed for flip-chip nanowire-based SQUIDs, in which a washer type SQUID pickup loop is introduced as an intermediate coupling level between the SQUID loop and the flux transformer input coil. The inductances and effective areas of all these devices were simulated. We found that at T = 77 K, flip-chip devices with the two-level coupling approach (coupling coefficient of 0.37) provided the best effective area of 0.46 mm(2) among all the tested devices. With a flux noise level of 55 mu Phi(0) Hz-1/2, the field sensitivity level was 240 fTHz-1/2. This sensitivity is not yet adequate for MEG applications but it is the best level ever reached for nanowire-based high-Tc SQUID magnetometers

    A 7-Channel High-T-c SQUID-Based On-Scalp MEG System

    No full text
    Objective: To present the technical design and demonstrate the feasibility of a multi-channel on-scalp magnetoencephalography (MEG) system based on high critical temperature (high-Tc) superconducting quantum interference devices (SQUIDs). Methods: We built a liquid nitrogen-cooled cryostat that houses seven YBCO SQUID magnetometers arranged in a dense, head-aligned array with minimal distance to the room-temperature environment for all sensors. We characterize the performance of this 7-channel system in terms of on-scalp MEG utilization and present recordings of spontaneous and evoked brain activity. Results: The center-to-center spacing between adjacent SQUIDs is 12.0 and 13.4 mm and all SQUIDs are in the range of 1-3 mm of the head surface. The cryostat reaches a base temperature of 70 K and stays cold for >16hwith a single 0.9 L filling. The white noise levels of the magnetometers is 50-130 fT/Hz1/2 at 10 Hz and they show low sensor-tosensor feedback flux crosstalk (<0.6%). We demonstrate evoked fields fromauditory stimuli and single-shot sensitivity to alpha modulation from the visual cortex. Conclusion: All seven channels in the system sensitively sample neuromagnetic fields with mm-scale scalp standoff distances. The hold time of the cryostat furthermore is sufficient for a day of recordings. As such, our multi-channel high-Tc SQUID-based system meets the demands of on-scalp MEG. Significance: The system presented here marks the first high-Tc SQUID-based on-scalp MEG system with more than two channels. It enables us to further explore the benefits of on-scalp MEG in future recordings

    Novel HTS DC squid solutions for NMR applications

    No full text
    We have developed a multilayer flux-transformer-based high-TC SQUID (flip-chip) magnetometer that improves signal-to-noise-ratios (SNR) in ultra-low field magnetic resonance (ulf-MR) recordings of protons in water. Direct ulf-MR-based benchmarking of the flip-chip versus a standard planar high-T C SQUID magnetometer resulted in improvement of the SNR by a factor of 2. This gain is attributable to the improved transformation coefficient (1.9 vs 5.3 nT/Φ0) that increased the signal available to the flip-chip sensor and to the lower noise at the measurement frequency (15 vs 25 fT/Hz1/2 at 4 kHz). The improved SNR can lead to better spectroscopic resolution, lower imaging times, and higher resolution in ulf-MR imaging systems based on high-T C SQUID technology. The experimental details of the sensors, calibration, and ulf-MR benchmarking are presented in this report

    Novel HTS DC squid solutions for NMR applications

    No full text
    We have developed a multilayer flux-transformer-based high-TC SQUID (flip-chip) magnetometer that improves signal-to-noise-ratios (SNR) in ultra-low field magnetic resonance (ulf-MR) recordings of protons in water. Direct ulf-MR-based benchmarking of the flip-chip versus a standard planar high-T C SQUID magnetometer resulted in improvement of the SNR by a factor of 2. This gain is attributable to the improved transformation coefficient (1.9 vs 5.3 nT/Φ0) that increased the signal available to the flip-chip sensor and to the lower noise at the measurement frequency (15 vs 25 fT/Hz1/2 at 4 kHz). The improved SNR can lead to better spectroscopic resolution, lower imaging times, and higher resolution in ulf-MR imaging systems based on high-T C SQUID technology. The experimental details of the sensors, calibration, and ulf-MR benchmarking are presented in this report
    corecore