3,023 research outputs found

    Prospects of searching for composite resonances at the LHC and beyond

    Full text link
    Composite Higgs models predict the existence of resonances. We study in detail the collider phenomenology of both the vector and fermionic resonances, including the possibility of both of them being light and within the reach of the LHC. We present current constraints from di-boson, di-lepton resonance searches and top partner pair searches on a set of simplified benchmark models based on the minimal coset SO(5)/SO(4)SO(5)/SO(4), and make projections for the reach of the HL-LHC. We find that the cascade decay channels for the vector resonances into top partners, or vice versa, can play an important role in the phenomenology of the models. We present a conservative estimate for their reach by using the same-sign di-lepton final states. As a simple extrapolation of our work, we also present the projected reach at the 27 TeV HE-LHC and a 100 TeV pppp collider.Comment: 61 pages, 13 figures; accepted version of JHE

    Primordial black holes from an electroweak phase transition

    Full text link
    We propose a mechanism that forms primordial black holes (PBHs) via a first-order electroweak phase transition (FOEWPT). The FOEWPT is realized by extending the Standard Model with a real singlet scalar, while the PBH formation is achieved by the collapse of non-topological solitons called Fermi-balls. Such solitons form via trapping fermions in the false vacuum during the FOEWPT, and they eventually collapse into PBHs due to the internal Yukawa attractive force. We demonstrate that a scenario with PBH dark matter candidate can exist, and the typical experimental signals include FOEWPT gravitational waves and the multi-lepton/jet or displaced vertex final states at the LHC.Comment: 17 pages + appendix and references, 7 figures. To match the published versio

    Leptogenesis triggered by a first-order phase transition

    Get PDF
    We propose a new scenario of leptogenesis, which is triggered by a first-order phase transition (FOPT). The right-handed neutrinos (RHNs) are massless in the old vacuum, while they acquire a mass in the new vacuum bubbles, and the mass gap is huge compared with the FOPT temperature. The ultra-relativistic bubble walls sweep the RHNs into the bubbles, where the RHNs experience fast decay and generate the lepton asymmetry, which is further converted to the baryon asymmetry of the Universe (BAU). Since the RHNs are out of equilibrium inside the bubble, the generated BAU does not suffer from the thermal bath washout. We first discuss the general feature of such a FOPT leptogenesis mechanism, and then realize it in an extended B−L model. The gravitational waves from U(1)B−L breaking could be detected at the future interferometers

    Probing electroweak phase transition with multi-TeV muon colliders and gravitational waves

    Full text link
    We study the complementarity of the proposed multi-TeV muon colliders and the near-future gravitational wave (GW) detectors to the first order electroweak phase transition (FOEWPT), taking the real scalar extended Standard Model as the representative model. A detailed collider simulation shows the FOEWPT parameter space can be greatly probed via the the vector boson fusion production of the singlet, and its subsequent decay to the di-Higgs or di-boson channels. Especially, almost all the parameter space yielding detectable GW signals can be probed by the muon colliders. Therefore, if we could detect stochastic GWs in the future, a muon collider could provide a hopeful crosscheck to identify their origin. On the other hand, there is considerable parameter space that escapes GW detections but is within the reach of the muon colliders. The precision measurements of Higgs couplings could also probe the FOEWPT parameter space efficiently.Comment: 15 pages + references, 5 figures. Accepted by JHE

    Primordial black holes from a cosmic phase transition: The collapse of Fermi-balls

    Get PDF
    We propose a novel primordial black hole (PBH) formation mechanism based on a first-order phase transition (FOPT). If a fermion species gains a huge mass in the true vacuum, the corresponding particles get trapped in the false vacuum as they do not have sufficient energy to penetrate the bubble wall. After the FOPT, the fermions are compressed into the false vacuum remnants to form non-topological solitons called Fermi-balls, and then collapse to PBHs due to the Yukawa attractive force. We derive the PBH mass and abundance, showing that for a [](GeV)FOPT the PBHs could be ∼1017 g and explain all of dark matter. If the FOPT happens at higher scale, PBHs are typically overproduced and extra dilution mechanism is necessary to satisfy current constraints
    • …
    corecore