63 research outputs found

    Algorithms, applications and systems towards interpretable pattern mining from multi-aspect data

    Get PDF
    How do humans move around in the urban space and how do they differ when the city undergoes terrorist attacks? How do users behave in Massive Open Online courses~(MOOCs) and how do they differ if some of them achieve certificates while some of them not? What areas in the court elite players, such as Stephen Curry, LeBron James, like to make their shots in the course of the game? How can we uncover the hidden habits that govern our online purchases? Are there unspoken agendas in how different states pass legislation of certain kinds? At the heart of these seemingly unconnected puzzles is this same mystery of multi-aspect mining, i.g., how can we mine and interpret the hidden pattern from a dataset that simultaneously reveals the associations, or changes of the associations, among various aspects of the data (e.g., a shot could be described with three aspects, player, time of the game, and area in the court)? Solving this problem could open gates to a deep understanding of underlying mechanisms for many real-world phenomena. While much of the research in multi-aspect mining contribute broad scope of innovations in the mining part, interpretation of patterns from the perspective of users (or domain experts) is often overlooked. Questions like what do they require for patterns, how good are the patterns, or how to read them, have barely been addressed. Without efficient and effective ways of involving users in the process of multi-aspect mining, the results are likely to lead to something difficult for them to comprehend. This dissertation proposes the M^3 framework, which consists of multiplex pattern discovery, multifaceted pattern evaluation, and multipurpose pattern presentation, to tackle the challenges of multi-aspect pattern discovery. Based on this framework, we develop algorithms, applications, and analytic systems to enable interpretable pattern discovery from multi-aspect data. Following the concept of meaningful multiplex pattern discovery, we propose PairFac to close the gap between human information needs and naive mining optimization. We demonstrate its effectiveness in the context of impact discovery in the aftermath of urban disasters. We develop iDisc to target the crossing of multiplex pattern discovery with multifaceted pattern evaluation. iDisc meets the specific information need in understanding multi-level, contrastive behavior patterns. As an example, we use iDisc to predict student performance outcomes in Massive Open Online Courses given users' latent behaviors. FacIt is an interactive visual analytic system that sits at the intersection of all three components and enables for interpretable, fine-tunable, and scrutinizable pattern discovery from multi-aspect data. We demonstrate each work's significance and implications in its respective problem context. As a whole, this series of studies is an effort to instantiate the M^3 framework and push the field of multi-aspect mining towards a more human-centric process in real-world applications

    Twitter in Academic Conferences: Usage, Networking and Participation over Time

    Full text link
    Twitter is often referred to as a backchannel for conferences. While the main conference takes place in a physical setting, attendees and virtual attendees socialize, introduce new ideas or broadcast information by microblogging on Twitter. In this paper we analyze the scholars' Twitter use in 16 Computer Science conferences over a timespan of five years. Our primary finding is that over the years there are increasing differences with respect to conversation use and information use in Twitter. We studied the interaction network between users to understand whether assumptions about the structure of the conversations hold over time and between different types of interactions, such as retweets, replies, and mentions. While `people come and people go', we want to understand what keeps people stay with the conference on Twitter. By casting the problem to a classification task, we find different factors that contribute to the continuing participation of users to the online Twitter conference activity. These results have implications for research communities to implement strategies for continuous and active participation among members

    Tweeting Questions in Academic Conferences: Seeking or Promoting Information?

    Get PDF
    The fast growth of social media has reshaped the traditional way of human interaction and information seeking behavior, which draws research attention on characterizing the new information seeking paradigm. However, results from previous studies might not be well grounded under certain social settings. In this paper, we leverage machine learning techniques to identify different types of question tweets within academic communities as an example of one particular social context. By studying over 160 thousands of tweets posted by 30 academic communities, we discovered a different landscape of information-seeking behaviors, where less tweets are regarded as question tweets, and more real information-seeking tweets are observed. We also found that users respond differently with different types of question tweets. We believe our study would be beneficial for understanding the information seeking behaviors in social media.ye
    corecore