1,329 research outputs found

    Dissipative State and Output Estimation of Systems with General Delays

    Full text link
    Dissipative state and output estimation for continuous time-delay systems pose a significant challenge when an unlimited number of pointwise and general distributed delays (DDs) are concerned. We propose an effective solution to this open problem using the Krasovski\u{\i} functional (KF) framework in conjunction with a quadratic supply rate function, where both the plant and the estimator can accommodate an unlimited number of pointwise and general DDs. All DDs can contain an unlimited number of square-integrable kernel functions, which are treated by an equivalent decomposition-approximation scheme. This novel approach allows for the factorization or approximation of any kernel function without introducing conservatism, and facilitates the construction of a complete-type KF with integral kernels that can encompass any number of differentiable (weak derivatives) and linearly independent functions. Our proposed solution is expressed as convex semidefinite programs presented in two theorems along with an iterative algorithm, which eliminates the need of nonlinear solvers. We demonstrate the effectiveness of our method using two challenging numerical experiments, including a system stabilized by a non-smooth controller.Comment: submitting to TA

    Enhancing Item-level Bundle Representation for Bundle Recommendation

    Full text link
    Bundle recommendation approaches offer users a set of related items on a particular topic. The current state-of-the-art (SOTA) method utilizes contrastive learning to learn representations at both the bundle and item levels. However, due to the inherent difference between the bundle-level and item-level preferences, the item-level representations may not receive sufficient information from the bundle affiliations to make accurate predictions. In this paper, we propose a novel approach EBRec, short of Enhanced Bundle Recommendation, which incorporates two enhanced modules to explore inherent item-level bundle representations. First, we propose to incorporate the bundle-user-item (B-U-I) high-order correlations to explore more collaborative information, thus to enhance the previous bundle representation that solely relies on the bundle-item affiliation information. Second, we further enhance the B-U-I correlations by augmenting the observed user-item interactions with interactions generated from pre-trained models, thus improving the item-level bundle representations. We conduct extensive experiments on three public datasets, and the results justify the effectiveness of our approach as well as the two core modules. Codes and datasets are available at https://github.com/answermycode/EBRec

    Performance-based plastic design method of high-rise steel frames

    Get PDF
    Under major earthquakes, high-rise steel moment frames designed according to the current codes will experience an inelastic deformation, which is difficult to predict and control. According to the principle of work-energy balance, a performance-based plastic design (PBPD) methodology is put forward for the design of high-rise steel frames in this study. In this method, the target drift and yield mechanisms are pre-selected as key performance criteria. The design base shear in a given earthquake level is calculated based on the work-energy balance principle that the work required to push the structure monotonically to the target drift is equal to the energy needed by an equivalent single degree of freedom to reach the same state. The plastic design is utilized to design the frame components and connections so as to attain the desired yield mechanism and behavior. The method has been adopted to design a ten-story steel moment resisting frame, and has been validated by nonlinear dynamic time history analyses and pushover analysis. The results indicate that the frames develop targeted strong column sway mechanisms, and the story drifts are less than the target values, thus satisfying the anticipated performance objectives. The addressed method herein can form a basis for the performance-based plastic design of high-rise steel moment resisting frames

    Functional Verification of High Performance Adders in COQ

    Get PDF
    Addition arithmetic design plays a crucial role in high performance digital systems. The paper proposes a systematic method to formalize and verify adders in a formal proof assistant COQ. The proposed approach succeeds in formalizing the gate-level implementations and verifying the functional correctness of the most important adders of interest in industry, in a faithful, scalable, and modularized way. The methodology can be extended to other adder architectures as well

    Simultaneous Measurement of Belt Speed and Vibration Through Electrostatic Sensing and Data Fusion

    Get PDF
    Accurate and reliable measurement of belt speed and vibration is of great importance in a range of industries. This paper presents a feasibility study of using an electrostatic sensor array and signal processing algorithms for the simultaneous measurement of belt speed and vibration in an online, continuous manner. The design, implementation, and assessment of an experimental system based on this concept are presented. In comparison with existing techniques, the electrostatic sensing method has the advantages of non-contact and simultaneous measurement, low cost, simple structure, and easy installation. The characteristics of electrostatic sensors are studied through finite-element modeling using a point charge moving in the sensing zone of the electrode. The sensor array is arranged in a 2 × 3 matrix, with the belt running between two rows of three identical sensing elements. The three signals in a row are cross correlated for speed calculation, and the results are then fused to give a final measurement. The vibration modes of the belt are identified by fusing the normalized spectra of vertically paired sensor signals. Experiments conducted on a two-pulley belt-driven rig show that the system can measure the belt speed with a relative error within ±2% over the range 2-10 m/s. More accurate and repeatable speed measurements are achieved for higher belt speeds and a shorter distance between the electrode and the belt. It is found that a stretched belt vibrates at the harmonics of the belt pass frequency and hence agrees the expected vibration characteristics

    Towards the Desirable Decision Boundary by Moderate-Margin Adversarial Training

    Full text link
    Adversarial training, as one of the most effective defense methods against adversarial attacks, tends to learn an inclusive decision boundary to increase the robustness of deep learning models. However, due to the large and unnecessary increase in the margin along adversarial directions, adversarial training causes heavy cross-over between natural examples and adversarial examples, which is not conducive to balancing the trade-off between robustness and natural accuracy. In this paper, we propose a novel adversarial training scheme to achieve a better trade-off between robustness and natural accuracy. It aims to learn a moderate-inclusive decision boundary, which means that the margins of natural examples under the decision boundary are moderate. We call this scheme Moderate-Margin Adversarial Training (MMAT), which generates finer-grained adversarial examples to mitigate the cross-over problem. We also take advantage of logits from a teacher model that has been well-trained to guide the learning of our model. Finally, MMAT achieves high natural accuracy and robustness under both black-box and white-box attacks. On SVHN, for example, state-of-the-art robustness and natural accuracy are achieved

    A review of the therapeutic role of the new third-generation TKI olverembatinib in chronic myeloid leukemia

    Get PDF
    Several tyrosine kinase inhibitors (TKIs) have been developed as targeted therapies to inhibit the oncogenic activity of several tyrosine kinases in chronic myeloid leukemia (CML), acute lymphoid leukemia (ALL), gastrointestinal stromal tumor (GIST), and other diseases. TKIs have significantly improved the overall survival of these patients and changed the treatment strategy in the clinic. However, approximately 50% of patients develop resistance or intolerance to imatinib. For second-generation TKIs, approximately 30%–40% of patients need to change therapy by 5 years when they are used as first-line treatment. Clinical study analysis showed that the T315I mutation is highly associated with TKI resistance. Developing new drugs that target the T315I mutation will address the dilemma of treatment failure. Olverembatinib, as a third-generation TKI designed for the T315I mutation, is being researched in China. Preliminary clinical data show the safety and efficacy in treating CML patients harboring the T315I mutation or who are resistant to first- or second-line TKI treatment. Herein, we review the characteristics and clinical trials of olverembatinib. We also discuss its role in the management of CML patients

    A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Porcine parvovirus (PPV) VP2 gene has been successfully expressed in many expression systems resulting in self-assembly of virus-like particles (VLPs) with similar morphology to the native capsid. Here, a pseudorabies virus (PRV) system was adopted to express the PPV VP2 gene.</p> <p>Methods</p> <p>A recombinant PRV SA215/VP2 was obtained by homologous recombination between the vector PRV viral DNA and a transfer plasmid. Then recombinant virus was purified with plaque purification, and its identity confirmed by PCR amplification, Western blot and indirect immunofluorescence (IFA) analyses. Electronic microscopy of PRV SA215/VP2 confirmed self-assembly of both pseudorabies virus and VLPs from VP2 protein.</p> <p>Results</p> <p>Immunization of piglets with recombinant virus elicited PRV-specific and PPV-specific humoral immune responses and provided complete protection against a lethal dose of PRV challenges. Gilts immunized with recombinant viruses induced PPV-specific antibodies, and significantly reduced the mortality rate of (1 of 28) following virulent PPV challenge compared with the control (7 of 31). Furthermore, PPV virus DNA was not detected in the fetuses of recombinant virus immunized gilts.</p> <p>Conclusions</p> <p>In this study, a recombinant PRV SA215/VP2 virus expressing PPV VP2 protein was constructed using PRV SA215 vector. The safety, immunogenicity, and protective efficacy of the recombinant virus were demonstrated in piglets and primiparous gilts. This recombinant PRV SA215/VP2 represents a suitable candidate for the development of a bivalent vaccine against both PRV and PPV infection.</p
    • …
    corecore