41 research outputs found

    China and the Japanese traditional family inheritance system

    Get PDF
    本文は現代両国の「家」に大きな影響を与えていた中国明清時代に普遍的に存在していた「同居共財」という関係下の「家」と、日本近世(江戸時代)における武家の「家」を対象に、その概念、相続の内容と形態上の種々の相違を明らかにした。さらに、両国における伝統的な「家」相続制度が及ぼす現代への影響を総括した

    SARS-CoV-2 spike-reactive naïve B cells and pre-existing memory B cells contribute to antibody responses in unexposed individuals after vaccination

    Get PDF
    IntroductionSince December 2019, the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) has presented considerable public health challenges. Multiple vaccines have been used to induce neutralizing antibodies (nAbs) and memory B-cell responses against the viral spike (S) glycoprotein, and many essential epitopes have been defined. Previous reports have identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike-reactive naïve B cells and preexisting memory B cells in unexposed individuals. However, the role of these spike-reactive B cells in vaccine-induced immunity remains unknown.MethodsTo elucidate the characteristics of preexisting SARS-CoV-2 S-reactive B cells as well as their maturation after antigen encounter, we assessed the relationship of spike-reactive B cells before and after vaccination in unexposed human individuals. We further characterized the sequence identity, targeting domain, broad-spectrum binding activity and neutralizing activity of these SARS-CoV-2 S-reactive B cells by isolating monoclonal antibodies (mAbs) from these B cells.ResultsThe frequencies of both spike-reactive naïve B cells and preexisting memory B cells before vaccination correlated with the frequencies of spike-reactive memory B cells after vaccination. Isolated mAbs from spike-reactive naïve B cells before vaccination had fewer somatic hypermutations (SHMs) than mAbs isolated from spike-reactive memory B cells before and after vaccination, but bound SARS-CoV-2 spike in vitro. Intriguingly, these germline-like mAbs possessed broad binding profiles for SARS-CoV-2 and its variants, although with low or no neutralizing capacity. According to tracking of the evolution of IGHV4-4/IGKV3-20 lineage antibodies from a single donor, the lineage underwent SHMs and developed increased binding activity after vaccination.DiscussionOur findings suggest that spike-reactive naïve B cells can be expanded and matured by vaccination and cocontribute to vaccine-elicited antibody responses with preexisting memory B cells. Selectively and precisely targeting spike-reactive B cells by rational antigen design may provide a novel strategy for next-generation SARS-CoV-2 vaccine development

    Rigidity-Mediated Afterglow Tuning of Small Molecules in Polymer Matrix through Photoinitiated Solvent-Free Copolymerization

    No full text
    The ability to tune afterglow attributes of organic materials can largely extend their utility in the field of lifetime-encoded security applications. Herein, the tuning of afterglow intensity and lifetime of molecule emitters after being doped into copolymer by photoinitiated solvent-free copolymerization are reported. The molar ratio adjustment of 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate in copolymerization allows systematic tuning of the rigidity of the resultant copolymers by occupying the free volume through methyl groups, enabling controlled stabilization of the in situ generated triplet excitons of the doped molecule emitters via effectively decreasing vibrational energy dissipation. With the use of this strategy, the green afterglow for 2,3-naphthalenedicarboxylic anhydride can be tuned with a lifetime from 170.1 to 1258.6 ms, accompanied by a 76-fold intensity enhancement. Furthermore, this strategy can be extended to tune multicolor afterglow materials through the choice of molecule dopants. When combined with digital light processing printing, the strategy allows for the facile fabrication of lifetime-encoded complex 3D objects with high precisions for security applications

    α-Mangostin Extraction from the Native Mangosteen (Garcinia mangostana L.) and the Binding Mechanisms of α-Mangostin to HSA or TRF.

    No full text
    In order to obtain the biological active compound, α-mangostin, from the traditional native mangosteen (Garcinia mangostana L.), an extraction method for industrial application was explored. A high yield of α-mangostin (5.2%) was obtained by extraction from dried mangosteen pericarps with subsequent purification on macroporous resin HPD-400. The chemical structure of α-mangostin was verified mass spectrometry (MS), nuclear magnetic resonance (1H NMR and 13C NMR), infrared spectroscopy (IR) and UV-Vis spectroscopy. The purity of the obtained α-mangostin was 95.6% as determined by HPLC analysis. The binding of native α-mangostin to human serum albumin (HSA) or transferrin (TRF) was explored by combining spectral experiments with molecular modeling. The results showed that α-mangostin binds to HSA or TRF as static complexes but the binding affinities were different in different systems. The binding constants and thermodynamic parameters were measured by fluorescence spectroscopy and absorbance spectra. The association constant of HSA or TRF binding to α-mangostin is 6.4832×105 L/mol and 1.4652×105 L/mol at 298 K and 7.8619×105 L/mol and 1.1582×105 L/mol at 310 K, respectively. The binding distance, the energy transfer efficiency between α-mangostin and HSA or TRF were also obtained by virtue of the Förster theory of non-radiation energy transfer. The effect of α-mangostin on the HSA or TRF conformation was analyzed by synchronous spectrometry and fluorescence polarization studies. Molecular docking results reveal that the main interaction between α-mangostin and HSA is hydrophobic interactions, while the main interaction between α-mangostin and TRF is hydrogen bonding and Van der Waals forces. These results are consistent with spectral results

    CdS Nanoparticles Decorated 1D CeO<sub>2</sub> Nanorods for Enhanced Photocatalytic Desulfurization Performance

    No full text
    CdS nanoparticles were constructed onto one-dimensional (1D) CeO2 nanorods by a two-step hydrothermal method. The X-ray diffraction (XRD), transmission election microscopy (TEM), Raman spectra, X-ray photoelectron spectra (XPS) and UV-Vis diffuse reflection spectroscopy (DRS) techniques were used to characterize these CdS/CeO2 nanocomposites. It was concluded that when the molar ratio of CdS and CeO2 was 1:1, the nanocomposites exhibited the best photocatalytic desulfurization activity, reaching 92% in 3 h. Meanwhile, transient photocurrent (PT) measurement, photoluminescence (PL) spectra and electrochemical impedance spectroscopy (EIS) measurement indicated that the modification of CeO2 nanorods by CdS nanoparticles could significantly inhibit the recombination of photogenerated electrons and holes. In addition, the possible mechanism of photocatalytic oxidation desulfurization of the nanocomposites was proposed. This study may provide an effective CeO2-based photocatalyst for photocatalytic desulfurization applications

    CdS Nanoparticles Decorated 1D CeO2 Nanorods for Enhanced Photocatalytic Desulfurization Performance

    No full text
    CdS nanoparticles were constructed onto one-dimensional (1D) CeO2 nanorods by a two-step hydrothermal method. The X-ray diffraction (XRD), transmission election microscopy (TEM), Raman spectra, X-ray photoelectron spectra (XPS) and UV-Vis diffuse reflection spectroscopy (DRS) techniques were used to characterize these CdS/CeO2 nanocomposites. It was concluded that when the molar ratio of CdS and CeO2 was 1:1, the nanocomposites exhibited the best photocatalytic desulfurization activity, reaching 92% in 3 h. Meanwhile, transient photocurrent (PT) measurement, photoluminescence (PL) spectra and electrochemical impedance spectroscopy (EIS) measurement indicated that the modification of CeO2 nanorods by CdS nanoparticles could significantly inhibit the recombination of photogenerated electrons and holes. In addition, the possible mechanism of photocatalytic oxidation desulfurization of the nanocomposites was proposed. This study may provide an effective CeO2-based photocatalyst for photocatalytic desulfurization applications

    The quenching constants that between α-mangostin and HSA/TRF.

    No full text
    <p>The quenching constants that between α-mangostin and HSA/TRF.</p

    Afterglow Carbon Dots: From Fundamentals to Applications

    No full text
    The ability of carbon dots (CDs) to emit afterglow emission in addition to fluorescence in response to UV-to-visible excitation allows them to be a new class of luminescent materials. When compared with traditional organic or inorganic afterglow materials, CDs have a set of advantages, including small size, ease of synthesis, and absence of highly toxic metal ions. In addition, high dependence of their afterglow color output on temperature, excitation wavelength, and aggregation degrees adds remarkable flexibility in the creation of multimode luminescence of CDs without the need for changing their intrinsic attributes. These characteristics make CDs particularly attractive in the fields of sensing, anticounterfeiting, and data encryption. In this review, we first describe the general attributes of afterglow CDs and their fundamental afterglow mechanism. We then highlight recent strategic advances in the generation or activation of the afterglow luminescence of CDs. Considerable emphasis is placed on the summarization of their emergent afterglow properties in response to external stimulation. We further highlight the emerging applications of afterglow CDs on the basis of their unique optical features and present the key challenges needed to be addressed before the realization of their full practical utility
    corecore