154 research outputs found

    Assessing reliability of protein-protein interactions by integrative analysis of data in model organisms

    Get PDF
    Background: Protein-protein interactions play vital roles in nearly all cellular processes and are involved in the construction of biological pathways such as metabolic and signal transduction pathways. Although large-scale experiments have enabled the discovery of thousands of previously unknown linkages among proteins in many organisms, the high-throughput interaction data is often associated with high error rates. Since protein interaction networks have been utilized in numerous biological inferences, the inclusive experimental errors inevitably affect the quality of such prediction. Thus, it is essential to assess the quality of the protein interaction data. Results: In this paper, a novel Bayesian network-based integrative framework is proposed to assess the reliability of protein-protein interactions. We develop a cross-species in silico model that assigns likelihood scores to individual protein pairs based on the information entirely extracted from model organisms. Our proposed approach integrates multiple microarray datasets and novel features derived from gene ontology. Furthermore, the confidence scores for cross-species protein mappings are explicitly incorporated into our model. Applying our model to predict protein interactions in the human genome, we are able to achieve 80% in sensitivity and 70% in specificity. Finally, we assess the overall quality of the experimentally determined yeast protein-protein interaction dataset. We observe that the more high-throughput experiments confirming an interaction, the higher the likelihood score, which confirms the effectiveness of our approach. Conclusion: This study demonstrates that model organisms certainly provide important information for protein-protein interaction inference and assessment. The proposed method is able to assess not only the overall quality of an interaction dataset, but also the quality of individual protein-protein interactions. We expect the method to continually improve as more high quality interaction data from more model organisms becomes available and is readily scalable to a genome-wide application

    Hybrid Control and Protection Scheme for Inverter Dominated Microgrids

    Get PDF

    A quasi-experimental study of the volume-based procurement (VBP) effect on antiviral medications of hepatitis B virus in China

    Get PDF
    Background: The Pilot Plan of National Centralized Volume-Based Procurement (NCVBP) was adopted to cope with the rapid increase in drug expenditures. This research aimed to quantitatively evaluate the impact of the NCVBP on antiviral medications for the hepatitis B virus.Methods: Data on nucleoside analogs (NAs) medications of hepatitis B virus monthly procurement records in the pilot cities from January 2018 to December 2019 were extracted from the China Drug Supply Information Platform (CDSIP). The impacts of the NCVBP on purchased volumes, expenditures, and pre-defined daily dose costs were evaluated by interrupted time-series (ITS) analysis using Stata 16.0. We constructed two segments with one interruptive point (March 2019).Results: Compared to the same period between pre-and post-intervention, the purchased volume of NAs medications were increased by 92.85%, and selected medications were increased by 119.09%. Analysis of changes in the level of NAs medication followed a decrease in purchased expenditure (coefficient: 5364.88, p < 0.001), meanwhile, the purchased volume was increased with statistical significance (coefficient:605.49, p < 0.001). The Defined Daily Dose cost (DDDc) of NAs medication followed a decrease (coefficient: 8.90, p < 0.001). The NCVBP reform was followed by an increase of 618.41 ten thousand Defined Daily Dose (DDD) (p < 0.001) in purchased volume and a reduction of 5273.84 ten thousand Chinese Yuan (CNY) (p < 0.001) in the purchased expenditure of selected medications in the level. The DDDc of selected medications decreased in the level (coefficient: 9.87, p < 0.001), while the DDDc of alternative medications increased in the slope (coefficient:0.07, p = 0.030). The purchased volume and expenditure of bid-winning products increased by 964.08 ten thousand DDD and 637.36 ten thousand CNY in the level (p < 0.001). An increase of 633.46 ten thousand DDD (p < 0.001) in purchased volume and a reduction of 4285.32 ten thousand CNY (p < 0.001) in the purchased expenditure of generic drugs in the level was observed.Conclusion: The NCVBP reduced the DDDc of NAs medication, improved the utilization of the selected medications, and promoted the usage of generic products

    Data Drift Monitoring for Log Anomaly Detection Pipelines

    Full text link
    Logs enable the monitoring of infrastructure status and the performance of associated applications. Logs are also invaluable for diagnosing the root causes of any problems that may arise. Log Anomaly Detection (LAD) pipelines automate the detection of anomalies in logs, providing assistance to site reliability engineers (SREs) in system diagnosis. Log patterns change over time, necessitating updates to the LAD model defining the `normal' log activity profile. In this paper, we introduce a Bayes Factor-based drift detection method that identifies when intervention, retraining, and updating of the LAD model are required with human involvement. We illustrate our method using sequences of log activity, both from unaltered data, and simulated activity with controlled levels of anomaly contamination, based on real collected log data

    Assessing reliability of protein-protein interactions by integrative analysis of data in model organisms

    Get PDF
    BACKGROUND: Protein-protein interactions play vital roles in nearly all cellular processes and are involved in the construction of biological pathways such as metabolic and signal transduction pathways. Although large-scale experiments have enabled the discovery of thousands of previously unknown linkages among proteins in many organisms, the high-throughput interaction data is often associated with high error rates. Since protein interaction networks have been utilized in numerous biological inferences, the inclusive experimental errors inevitably affect the quality of such prediction. Thus, it is essential to assess the quality of the protein interaction data. RESULTS: In this paper, a novel Bayesian network-based integrative framework is proposed to assess the reliability of protein-protein interactions. We develop a cross-species in silico model that assigns likelihood scores to individual protein pairs based on the information entirely extracted from model organisms. Our proposed approach integrates multiple microarray datasets and novel features derived from gene ontology. Furthermore, the confidence scores for cross-species protein mappings are explicitly incorporated into our model. Applying our model to predict protein interactions in the human genome, we are able to achieve 80% in sensitivity and 70% in specificity. Finally, we assess the overall quality of the experimentally determined yeast protein-protein interaction dataset. We observe that the more high-throughput experiments confirming an interaction, the higher the likelihood score, which confirms the effectiveness of our approach. CONCLUSION: This study demonstrates that model organisms certainly provide important information for protein-protein interaction inference and assessment. The proposed method is able to assess not only the overall quality of an interaction dataset, but also the quality of individual protein-protein interactions. We expect the method to continually improve as more high quality interaction data from more model organisms becomes available and is readily scalable to a genome-wide application

    Droplet behavior of non-equilibrium condensation in the supersonic separator

    Get PDF

    Transient Receptor Potential V Channels Are Essential for Glucose Sensing by Aldolase and AMPK

    Get PDF
    Fructose-1,6-bisphosphate (FBP) aldolase links sensing of declining glucose availability to AMPK activation via the lysosomal pathway. However, how aldolase transmits lack of occupancy by FBP to AMPK activation remains unclear. Here, we show that FBP-unoccupied aldolase interacts with and inhibits endoplasmic reticulum (ER)-localized transient receptor potential channel subfamily V, inhibiting calcium release in low glucose. The decrease of calcium at contact sites between ER and lysosome renders the inhibited TRPV accessible to bind the lysosomal v-ATPase that then recruits AXIN:LKB1 to activate AMPK independently of AMP. Genetic depletion of TRPVs blocks glucose starvation-induced AMPK activation in cells and liver of mice, and in nematodes, indicative of physical requirement of TRPVs. Pharmacological inhibition of TRPVs activates AMPK and elevates NAD(+) levels in aged muscles, rejuvenating the animals' running capacity. Our study elucidates that TRPVs relay the FBP-free status of aldolase to the reconfiguration of v-ATPase, leading to AMPK activation in low glucose

    An Empirical Comparison of Information-Theoretic Criteria in Estimating the Number of Independent Components of fMRI Data

    Get PDF
    BACKGROUND: Independent Component Analysis (ICA) has been widely applied to the analysis of fMRI data. Accurate estimation of the number of independent components of fMRI data is critical to reduce over/under fitting. Although various methods based on Information Theoretic Criteria (ITC) have been used to estimate the intrinsic dimension of fMRI data, the relative performance of different ITC in the context of the ICA model hasn't been fully investigated, especially considering the properties of fMRI data. The present study explores and evaluates the performance of various ITC for the fMRI data with varied white noise levels, colored noise levels, temporal data sizes and spatial smoothness degrees. METHODOLOGY: Both simulated data and real fMRI data with varied Gaussian white noise levels, first-order auto-regressive (AR(1)) noise levels, temporal data sizes and spatial smoothness degrees were carried out to deeply explore and evaluate the performance of different traditional ITC. PRINCIPAL FINDINGS: Results indicate that the performance of ITCs depends on the noise level, temporal data size and spatial smoothness of fMRI data. 1) High white noise levels may lead to underestimation of all criteria and MDL/BIC has the severest underestimation at the higher Gaussian white noise level. 2) Colored noise may result in overestimation that can be intensified by the increase of AR(1) coefficient rather than the SD of AR(1) noise and MDL/BIC shows the least overestimation. 3) Larger temporal data size will be better for estimation for the model of white noise but tends to cause severer overestimation for the model of AR(1) noise. 4) Spatial smoothing will result in overestimation in both noise models. CONCLUSIONS: 1) None of ITC is perfect for all fMRI data due to its complicated noise structure. 2) If there is only white noise in data, AIC is preferred when the noise level is high and otherwise, Laplace approximation is a better choice. 3) When colored noise exists in data, MDL/BIC outperforms the other criteria
    • …
    corecore