191 research outputs found

    Expression and Clinical Significance of mTOR and PTEN in Non-small Cell Lung Cancer

    Get PDF
    Background and objective It has been proved that mTOR was an important signal transduction molecular and protein kinase regulating cell growth and proliferation, and mTOR could activate the downstream protein effector. PTEN could negatively regulate mTOR signal pathway and inhibit its activity. The aim of this study is to detect the mRNA expression levels of mTOR and PTEN gene, which are the key genes of mTOR signaling pathway in human non-small cell lung cancer (NSCLC) tissue. The relationship between mTOR signaling pathway and NSCLC is also explored. Methods Lung cancer tissue specimens were obtained from 65 patients. Adjacent-tumor non-small cell lung cancer tissues from the 30 patients were served as control. The RT-PCR technique was used to detect the mTOR and PTEN gene expression levels. Results The average mRNA expression levels of mTOR gene were significantly higher (0.23±0.16) in lung cancer than in adjacent-tumor tissue (0.12±0.09)(P < 0.01). The average mRNA expression levels of PTEN gene were (0.19±0.28) in lung cancer, while the mRNA expression levels of PTEN gene were (0.53±0.28) in adjacent-tumor tissue (P < 0.01). The levels of PTEN gene expression in non-small cell lung cancer were significantly lower than that in adjacent-tumor lung tissue. There are not significant relationship between mTOR and PTEN gene expression levels and patients’ age, gender, pathological type, differentiation, lymph node metastasis, except tumor size. Conclusion The expression of mTOR is activated in NSCLC. The expression of PTEN is absent or decreased. The mTOR activated in NSCLC may be correlate with the absent or decreased of PTEN. The absent or decreased expression of PTEN and the actived mTOR may play important roles in carcinogenesis and metastasis of NSCLC

    Identification of apoptosis-related gene signatures as potential biomarkers for differentiating active from latent tuberculosis via bioinformatics analysis

    Get PDF
    BackgroundApoptosis is associated with the pathogenesis of Mycobacterium tuberculosis infection. This study aims to identify apoptosis-related genes as biomarkers for differentiating active tuberculosis (ATB) from latent tuberculosis infection (LTBI).MethodsThe tuberculosis (TB) datasets (GSE19491, GSE62525, and GSE28623) were downloaded from the Gene Expression Omnibus (GEO) database. The diagnostic biomarkers differentiating ATB from LTBI were identified by combining the data of protein-protein interaction network, differentially expressed gene, Weighted Gene Co-Expression Network Analysis (WGCNA), and receiver operating characteristic (ROC) analyses. Machine learning algorithms were employed to validate the diagnostic ability of the biomarkers. Enrichment analysis for biomarkers was established, and potential drugs were predicted. The association between biomarkers and N6-methyladenosine (m6A) or 5-methylated cytosine (m5C) regulators was evaluated.ResultsSix biomarkers including CASP1, TNFSF10, CASP4, CASP5, IFI16, and ATF3 were obtained for differentiating ATB from LTBI. They showed strong diagnostic performances, with area under ROC (AUC) values > 0.7. Enrichment analysis demonstrated that the biomarkers were involved in immune and inflammation responses. Furthermore, 24 drugs, including progesterone and emricasan, were predicted. The correlation analysis revealed that biomarkers were positively correlated with most m6A or m5C regulators.ConclusionThe six ARGs can serve as effective biomarkers differentiating ATB from LTBI and provide insight into the pathogenesis of Mycobacterium tuberculosis infection

    Tongxinluo Enhances Neurogenesis and Angiogenesis in Peri-Infarct Area and Subventricular Zone and Promotes Functional Recovery after Focal Cerebral Ischemic Infarction in Hypertensive Rats

    Get PDF
    Background. Tongxinluo is a traditional Chinese medicine compound with the potential to promote the neuronal functional recovery in cerebral ischemic infarction. Objective. This study aimed to disclose whether tongxinluo promotes neurological functional recovery and neurogenesis and angiogenesis in the infarcted area and SVZ after cerebral ischemic infarction in hypertensive rats. Methods. The ischemic model was prepared by distal middle cerebral artery occlusion (MCAO) in hypertensive rats. Tongxinluo was administrated 24 h after MCAO and lasted for 3, 7, or 14 days. Behavioral tests were performed to evaluate the protection of tongxinluo. Immunochemical staining was applied on brain tissue to evaluate the effects of tongxinluo on neurogenesis and vascularization in the MCAO model rats. Results. Postinjury administration of tongxinluo ameliorated the neuronal function deficit in the MCAO model rats. As evidenced by the immunochemical staining, BrdU+/DCX+, BrdU+/nestin+, and BrdU+ vascular endothelial cells were promoted to proliferate in SVZ after tongxinluo administration. The matured neurons stained by NeuN and vascularization by laminin staining were observed after tongxinluo administration in the peri-infarct area. Conclusion. Tongxinluo postischemia administration could ameliorate the neurological function deficit in the model rats. Possible mechanisms are related to neurogenesis and angiogenesis in the peri-infarct area and SVZ

    Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities

    Get PDF
    The ability to produce small scale, crystalline silicon spheres is of significant technological and scientific importance, yet scalable methods for doing so have remained elusive. Here we demonstrate a silicon nanosphere fabrication process based on an optical fibre drawing technique. A silica-cladded silicon-core fibre with diameters down to 340 nm is continuously fed into a flame defining an axial thermal gradient and the continuous formation of spheres whose size is controlled by the feed speed is demonstrated. In particular, spheres of diameter \u3c 500 nm smaller than those produced under isothermal heating conditions are shown and analysed. A fibre with dual cores, p-type and n-type silicon, is drawn and processed into spheres. Spatially coherent break-up leads to the joining of the spheres into a bispherical silicon \u27p-n molecule\u27. The resulting device is measured to reveal a rectifying I-V curve consistent with the formation of a p-n junction

    Unveiling the origin of catalytic sites of Pt nanoparticles decorated on oxygen-deficient vanadium-doped cobalt hydroxide nanosheet for hybrid sodium-air batteries

    Get PDF
    Highly active bifunctional electrocatalysts are crucial for improving the performance of rechargeable metal-air batteries. However, most reported bifunctional electrocatalysts feature poor electrocatalytic activity and stability toward oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Here, we have reported the first-ever study of an effective one-step reduction-assisted exfoliation method to exfoliate bulk vanadium-doped cobalt hydroxide (V-doped Co(OH)2, denoted as V-Co(OH)2) into ultrathin nanosheets with abundant oxygen vacancies (V-Co(OH)2-Ov) and simultaneously anchor them with highly dispersed ultrafine Pt nanoparticles (NPs) with a nominal size of 0.8-2.4 nm (denoted as Pt/V-Co(OH)2-Ov). The Pt/V-Co(OH)2-Ov catalyst exhibits improved catalytic performance in ORR/OER. X-ray absorption spectroscopy analysis and theoretical calculations reveal the strong interfacial electronic interactions between Pt NPs and V-Co(OH)2-Ov, which synergistically improves oxygen intermediates' adsorption/desorption, enhancing the ORR and OER performance. Using Pt/V-Co(OH)2-Ov as a catalyst in the air cathode, a hybrid sodium-air battery displays a record value of an ultralow charging-discharging voltage gap of 0.07 V at a current density of 0.01 mA cm-2 with remarkable stability of up to 1000 cycles. This reduction-assisted exfoliation approach provides a new strategy to generate oxygen vacancies in metal hydroxides, which act as anchoring sites for deposition of sub-nanometal NPs via a strong interfacial effect

    Beam test of a 180 nm CMOS Pixel Sensor for the CEPC vertex detector

    Full text link
    The proposed Circular Electron Positron Collider (CEPC) imposes new challenges for the vertex detector in terms of pixel size and material budget. A Monolithic Active Pixel Sensor (MAPS) prototype called TaichuPix, based on a column drain readout architecture, has been developed to address the need for high spatial resolution. In order to evaluate the performance of the TaichuPix-3 chips, a beam test was carried out at DESY II TB21 in December 2022. Meanwhile, the Data Acquisition (DAQ) for a muti-plane configuration was tested during the beam test. This work presents the characterization of the TaichuPix-3 chips with two different processes, including cluster size, spatial resolution, and detection efficiency. The analysis results indicate the spatial resolution better than 5 ÎĽm\mu m and the detection efficiency exceeds 99.5 % for both TaichuPix-3 chips with the two different processes

    A novel molecular signature for predicting prognosis and immunotherapy response in osteosarcoma based on tumor-infiltrating cell marker genes

    Get PDF
    BackgroundTumor infiltrating lymphocytes (TILs), the main component in the tumor microenvironment, play a critical role in the antitumor immune response. Few studies have developed a prognostic model based on TILs in osteosarcoma.MethodsScRNA-seq data was obtained from our previous research and bulk RNA transcriptome data was from TARGET database. WGCNA was used to obtain the immune-related gene modules. Subsequently, we applied LASSO regression analysis and SVM algorithm to construct a prognostic model based on TILs marker genes. What’s more, the prognostic model was verified by external datasets and experiment in vitro. ResultsEleven cell clusters and 2044 TILs marker genes were identified. WGCNA results showed that 545 TILs marker genes were the most strongly related with immune. Subsequently, a risk model including 5 genes was developed. We found that the survival rate was higher in the low-risk group and the risk model could be used as an independent prognostic factor. Meanwhile, high-risk patients had a lower abundance of immune cell infiltration and many immune checkpoint genes were highly expressed in the low-risk group. The prognostic model was also demonstrated to be a good predictive capacity in external datasets. The result of RT-qPCR indicated that these 5 genes have differential expression which accorded with the predicting outcomes.ConclusionsThis study developed a new molecular signature based on TILs marker genes, which is very effective in predicting OS prognosis and immunotherapy response

    Segmental Membranous Glomerulopathy in Adults

    Get PDF
    Introduction: The clinicopathological features of segmental membranous glomerulopathy (SMGN) have not been well characterized. The aim of this study was to investigate the prevalence and clinicopathological features of SMGN in adults. Methods: Adult patients with biopsy-confirmed SMGN in the native kidney at our center between January 2017 to September 2020 were identified. The clinicopathological features of SMGN were collected. The glomerular deposition of IgG subclasses, M-type phospholipase A2 receptor 1 (PLA2R), thrombospondin type 1 domain-containing 7A (THSD7A) and neural epidermal growth factor-like 1 protein (NELL1) were tested. Clinical and pathologic features were comparable between NELL1-positive and NELL1-negative SMGN. Results: A total of 167 patients with biopsy-proven SMGN were enrolled. During the same period, 32,640 (33.0%) out of 98,939 renal biopsies were diagnosed with membranous nephropathy (MN) in adults. SMGN accounted for 0.17% of total kidney biopsies and 0.51% of MN in adults. One hundred and fifty (89.8%) cases were isolated SMGN and 17 (10.2%) cases were complicated with other kidney disease. Clinically, the median age of isolated SMGN patients was 41.5 years, with female (74%) predominance, and 33.1% had full nephrotic syndrome. Pathologically, IgG1 was the dominant subclass (92.5%), followed by IgG4 (45.0%). PLA2R and THSD7A staining were done in 142 and 136 isolated SMGN cases, respectively. In which, all the cases showed negative. NELL1 staining was done in 135 isolated SMGN cases, 58 cases (43.0%) showed positive. Fifty-eight patients (41.1%) had diffuse (≥90%) foot process effacement, 119 patients (83.8%) had either stage I (38.0%) or stage II (45.8%) membranous alterations in patients with SMGN. Most patients with NELL1-positive SMGN were female. Patients with NELL1-positive SMGN were more likely with lower prevalence of full nephrotic syndrome than NELL1-negative SMGN. Conclusions: SMGN is a relatively rare pathological type. Majority of patients with isolated SMGN were female, with a median age of 41.5 years, 33.1% had full nephrotic syndrome, absence of PLA2R and THSD7A, 43.0% with NELL1-positive, and mainly stage I or II MN (83.8%). NELL1 is the major target antigen of SMGN in adults
    • …
    corecore