137 research outputs found

    Diatom‐based reconstruction of multi‐timescale climate and environmental change from Lakes Dojran and Ohrid in the northeastern Mediterranean region

    Get PDF
    The southern Balkans is located at the juncture between the west–east and north–south contrasting hydroclimatic domains across the Mediterranean, and this study focuses on diatoms as indicators of late Quaternary climate change and recent human impact in Lakes Dojran and Ohrid. Lake Dojran (Macedonia/Greece) is a shallow and currently hypereutrophic lake controlled by a classic Mediterranean climate. The Lake Dojran diatom data provide a new insight into changes in lake level and trophic status during the Younger Dryas and Holocene in the northeastern Mediterranean region, and are also important in disentangling regional climate effects from local catchment dynamics during the Holocene. The pigment data from the upper part of the sequence provide clear evidence for accelerated eutrophication of Lake Dojran due to water abstraction and intensified agriculture during the recent several centuries. Ancient lakes in Europe are restricted to the southern Balkan region, and Lake Ohrid (Macedonia/Albania), under the influence of Mediterranean and somewhat continental climates, is a rare example with a high degree of biodiversity and endemism. In deep and highly oligotrophic Lake Ohrid, the diatom data provide a clear picture of Lateglacial and Holocene changes in temperature and lake productivity which is primarily modulated through stratification or mixing regime and associated nutrient redistribution in the water column, and comparison with the data from Lake Dojran reveals different responses of diatoms to climate in the contrasting types of lakes. Diatom analysis of a short core in the southeastern part of Lake Ohrid reveals human‐induced eutrophication of Lake Ohrid in the recent several decades influenced by nutrient transfer through springs from hydraulically‐linked Lake Prespa. Preliminary diatom analysis of the ICDP deep core in Lake Ohrid generates a preliminary interpretation of the response of diatoms to glacial–interglacial cycles and the evolution of endemic diatom species during the past more than one million years

    Structure Invariant Transformation for better Adversarial Transferability

    Full text link
    Given the severe vulnerability of Deep Neural Networks (DNNs) against adversarial examples, there is an urgent need for an effective adversarial attack to identify the deficiencies of DNNs in security-sensitive applications. As one of the prevalent black-box adversarial attacks, the existing transfer-based attacks still cannot achieve comparable performance with the white-box attacks. Among these, input transformation based attacks have shown remarkable effectiveness in boosting transferability. In this work, we find that the existing input transformation based attacks transform the input image globally, resulting in limited diversity of the transformed images. We postulate that the more diverse transformed images result in better transferability. Thus, we investigate how to locally apply various transformations onto the input image to improve such diversity while preserving the structure of image. To this end, we propose a novel input transformation based attack, called Structure Invariant Attack (SIA), which applies a random image transformation onto each image block to craft a set of diverse images for gradient calculation. Extensive experiments on the standard ImageNet dataset demonstrate that SIA exhibits much better transferability than the existing SOTA input transformation based attacks on CNN-based and transformer-based models, showing its generality and superiority in boosting transferability. Code is available at https://github.com/xiaosen-wang/SIT.Comment: Accepted by ICCV 202

    A novel multi-dimensional reliability approach for floating wind turbines under power production conditions

    Get PDF
    Floating offshore wind turbines (FOWT) generate green renewable energy and are a vital part of the modern offshore wind energy industry. Robust predicting extreme offshore loads during FOWT operations is an important safety concern. Excessive structural bending moments may occur during certain sea conditions, posing an operational risk of structural damage. This paper uses the FAST code to analyze offshore wind turbine structural loads due to environmental loads acting on a specific FOWT under actual local environmental conditions. The work proposes a unique Gaidai-Fu-Xing structural reliability approach that is probably best suited for multi-dimensional structural responses that have been simulated or measured over a long period to produce relatively large ergodic time series. In the context of numerical simulation, unlike existing reliability approaches, the novel methodology does not need to re-start simulation again each time the system fails. As shown in this work, an accurate forecast of the probability of system failure can be made using measured structural response. Furthermore, traditional reliability techniques cannot effectively deal with large dimensionality systems and cross-correction across multiple dimensions. The paper aims to establish a state-of-the-art method for extracting essential information concerning extreme responses of the FOWT through simulated time-history data. Three key components of structural loads are analyzed, including the blade-root out-of-plane bending moment, tower fore-aft bending moment, and mooring line tension. The approach suggested in this study allows predicting failure probability efficiently for a non-linear multi-dimensional dynamic system as a whole.publishedVersio

    Complexity of diatom response to Lateglacial and Holocene climate and environmental change in ancient, deep and oligotrophic Lake Ohrid (Macedonia and Albania)

    Get PDF
    Lake Ohrid (Macedonia and Albania) is a rare example of a deep, ancient Mediterranean lake and is a key site for palaeoclimate research in the northeastern Mediterranean region. This study conducts the analysis of diatoms as a proxy for Lateglacial and Holocene climate and environmental change in Lake Ohrid at a higher resolution than in previous studies. While Lake Ohrid has the potential to be sensitive to water temperature change, the data demonstrate a highly complex diatom response, probably comprising a direct response to temperature-induced lake productivity in some phases and an indirect response to temperature-related lake stratification or mixing and epilimnetic nutrient availability in others. The data also demonstrate the possible influence of physical limnological (e.g. the influence of wind stress on stratification or mixing) and chemical processes (e.g. the influence of catchment dynamics on nutrient input) in mediating the complex response of diatoms. During the Lateglacial (ca. 12 300-11 800 cal yr BP), the low-diversity dominance of hypolimnetic Cyclotella fottii indicates low lake productivity, linked to low water temperature. Although the subsequent slight increase in small, epilimnetic C. minuscula during the earliest Holocene (ca. 11 800-10 600 cal yr BP) suggests climate warming and enhanced stratification, diatom concentration remains as low as during the Lateglacial, suggesting that water temperature increase was muted across this major transition. The early Holocene (ca. 10 600-8200 cal yr BP) is characterised by a sustained increase in epilimnetic taxa, with mesotrophic C. ocellata indicating high water-temperature-induced productivity between ca. 10 600-10 200 cal yr BP and between ca. 9500-8200 cal yr BP and with C. minuscula in response to low nutrient availability in the epilimnion between ca. 10 200-9500 cal yr BP. During the middle Holocene (ca. 8200-2600 cal yr BP), when sedimentological and geochemical proxies provide evidence for maximum Holocene water temperature, anomalously low C. ocellata abundance is probably a response to epilimnetic nutrient limitation, almost mimicking the Lateglacial flora apart from the occurrence of mesotrophic Stephanodiscus transylvanicus in the hypolimnion. During the late Holocene (ca. 2600 cal yr BP-present), high abundance and fluctuating composition of epilimnetic taxa are probably a response more to enhanced anthropogenic nutrient input, particularly nitrogen enrichment, than to climate. Overall, the data indicate that previous assumptions concerning the linearity of diatom response in this deep, ancient lake are invalid, and multi-proxy analysis is essential to improve understanding of palaeolimnological dynamics in future research on the long, Quaternary sequence

    Improving the Transferability of Adversarial Samples by Path-Augmented Method

    Full text link
    Deep neural networks have achieved unprecedented success on diverse vision tasks. However, they are vulnerable to adversarial noise that is imperceptible to humans. This phenomenon negatively affects their deployment in real-world scenarios, especially security-related ones. To evaluate the robustness of a target model in practice, transfer-based attacks craft adversarial samples with a local model and have attracted increasing attention from researchers due to their high efficiency. The state-of-the-art transfer-based attacks are generally based on data augmentation, which typically augments multiple training images from a linear path when learning adversarial samples. However, such methods selected the image augmentation path heuristically and may augment images that are semantics-inconsistent with the target images, which harms the transferability of the generated adversarial samples. To overcome the pitfall, we propose the Path-Augmented Method (PAM). Specifically, PAM first constructs a candidate augmentation path pool. It then settles the employed augmentation paths during adversarial sample generation with greedy search. Furthermore, to avoid augmenting semantics-inconsistent images, we train a Semantics Predictor (SP) to constrain the length of the augmentation path. Extensive experiments confirm that PAM can achieve an improvement of over 4.8% on average compared with the state-of-the-art baselines in terms of the attack success rates.Comment: 10 pages + appendix, CVPR 202

    Energy and Environmental Efficiency Evaluation of Transportation Systems in China’s 255 Cities

    Get PDF
    China’s transportation sector suffers from excessive energy consumption and serious pollutant emissions. There is increasing pressure to improve energy and environmental efficiency (EEE). This paper researches the EEE of transportation systems in 255 Chinese cities from 2015 to 2019 with the assistance of the super-efficiency SBM model. Research results show that the five-year average EEE of the Chinese transportation system is 0.4420, indicating an overall low performance, with most regions still needing improvement. There are significant differences in the transportation system EEE between cities, with Guangzhou, Maoming, and Zhoushan ranking in the top three, and Heihe, Xining, and Taiyuan in the bottom. Cities with a better economic base, developed water systems and more relevant policy documents do better in energy use and environmental protection compared to other cities. Moreover, the development of the transportation systems is uneven, with noticeable regional differences. The general trend is that cities located in the eastern have better transportation systems EEE than cities in other economic zones. The findings should have a far-reaching impact on the sustainable development of cities. It also provides an essential reference for the research on EEE efficiency of transportation systems in China and other countries

    Topological superfluid of spinless Fermi gases in p-band honeycomb optical lattices with on-site rotation

    Full text link
    In this paper, we put forward to another route realizing topological superfluid (TS). In contrast to conventional method, spin-orbit coupling and external magnetic field are not requisite. Introducing an experimentally feasible technique called on-site rotation (OSR) into p-band honeycomb optical lattices for spinless Fermi gases and considering CDW and pairing on the same footing, we investigate the effects of OSR on superfluidity. The results suggest that when OSR is beyond a critical value, where CDW vanishes, the system transits from a normal superfluid (NS) with zero TKNN number to TS labeled by a non-zero TKNN number. In addition, phase transitions between different TS are also possible

    Topological Superfluid in one-dimensional Ultracold Atomic System with Spin-Orbit Coupling

    Full text link
    We propose a one-dimensional Hamiltonian H1DH_{1D} which supports Majorana fermions when dx2y2d_{x^{2}-y^{2}}-wave superfluid appears in the ultracold atomic system and obtain the phase-separation diagrams both for the time-reversal-invariant case and time-reversal-symmetry-breaking case. From the phase-separation diagrams, we find that the single Majorana fermions exist in the topological superfluid region, and we can reach this region by tuning the chemical potential μ\mu and spin-orbit coupling αR\alpha_{R}. Importantly, the spin-orbit coupling has realized in ultracold atoms by the recent experimental achievement of synthetic gauge field, therefore, our one-dimensional ultra-cold atomic system described by H1DH_{1D} is a promising platform to find the mysterious Majorana fermions.Comment: 5 papers, 2 figure
    corecore