5 research outputs found

    Cancer cells resist hyperthermia due to its obstructed activation of caspase 3

    No full text
    AimIt is well known that inducing hyperthermia is a type of cancer treatment but some research groups indicate that this treatment is not effective. This article finds and explains the mechanism of this treatment and its possible problems.BackgroundHyperthermia is commonly known as a state when the temperature of the body rises to a level that can threaten one’s health. Hyperthermia is a type of cancer treatment in which body tissue is exposed to high temperatures (up to 45°C). Research has shown that high temperatures can damage and kill cancer cells, usually with minimal injury to normal tissues. However, this mechanism is not known.Materials and MethodsWe recently treated cancer cells with different temperatures ranging from 37°C to 47°C and further measured their caspase 3 secretion by ELISA, western blot and cell survival rate by microscope.ResultsWe found that most cancer cells are able to resist hyperthermia more than normal cells most likely via non-activation of caspase3. We also found that hyperthermia-treated (≥41°) cancer cells extend a long pseudopod-like extension in comparison to the same cancer cells under normal conditions.ConclusionOur data here indicates that cancer cells have resistance to higher temperatures compared to normal cells via non-activation of caspase 3. This is a significant issue that needs to be brought to attention as the medical community has always believed that a high temperature treatment can selectively kill cancer/tumor cells. Additionally, we believe that the pseudopod-like extensions of hyperthermia-treated cancer cells must be related to its resistance to hyperthermia

    Pattern of COVID-19 in Sichuan province, China: A descriptive epidemiological analysis.

    No full text
    This study described the epidemiology of 487 confirmed coronavirus disease 2019 (COVID-19) cases in Sichuan province of China, and aimed to provide epidemiological evidence to support public health decision making. Epidemiological information of 487 COVID-19 cases were collected from the official websites of 21 districts (including 18 cities, 3 autonomous prefecture) health commissions within Sichuan between 21st of January 2020 to 17th of April 2020. We focus on the single-day diagnosis, demographics (gender and age), regional distribution, incubation period and symptoms. The number of single-day confirmed COVID-19 cases reach a peak on January 29 (33 cases), and then decreased. Chengdu (121 cases), Dazhou (39 cases) Nanchong (37 cases) and Ganzi Tibetan Autonomous Prefecture (78 cases) contributed 275 cases (56.5% of the total cases) of Sichuan province. The median age of patients was 44.0 years old and 52.6% were male. The history of living in or visiting Hubei, close contact, imported and unknown were 170 cases (34.9%), 136 cases (27.9%), 21 cases (4.3%) and 160 cases (32.9%) respectively. The interval from the onset of initial symptoms to laboratory diagnosis was 4.0 days in local cases, while that of imported cases was 4.5 days. The most common symptoms of illness onset were fever (71.9%) and cough (35.9%). The growth rate of COVID-19 in Sichuan has significantly decreased. New infected cases have shifted from the living in or visiting Wuhan and close contact to imported. It is necessary to closely monitor the physical condition of imported cases
    corecore