294 research outputs found

    Role of public and private investments for green economic recovery in the post-COVID-19

    Get PDF
    This study evaluates the outlook of government expenditure through public and private financing for the green economic revitalization after COVID-19 in Canada. The various econometric estimations are used to measure the impact of government expenditure on green economic recovery. The implementation of public investment is explicitly associated with private funding. The results suggest that the government policy incentives and non-government financing influence fossil fuel energy sources proportions on non-government investment, which is additional than the feed-in tariffs. According to fixed effects results, the distribution of fossil fuel energy sources is an essential obstacle in solar energy investment. In contrast, the presence of varied types of renewable energy encourages non-government climate investment. Throughout the study period after the breakout of the pandemic phase, neither fossil fuel energy sources nor economic policy is marginally efficient. The different macroeconomic programs in green economic recovery might be ideal for attaining the needed impact. The critical policy conclusion of the results of this research is that an influential role of the public and private investment may be part of an optimal firm innovation plan for green economic recovery in the post-COVID-19 period

    Integrating Overlapping Structures and Background Information of Words Significantly Improves Biological Sequence Comparison

    Get PDF
    Word-based models have achieved promising results in sequence comparison. However, as the important statistical properties of words in biological sequence, how to use the overlapping structures and background information of the words to improve sequence comparison is still a problem. This paper proposed a new statistical method that integrates the overlapping structures and the background information of the words in biological sequences. To assess the effectiveness of this integration for sequence comparison, two sets of evaluation experiments were taken to test the proposed model. The first one, performed via receiver operating curve analysis, is the application of proposed method in discrimination between functionally related regulatory sequences and unrelated sequences, intron and exon. The second experiment is to evaluate the performance of the proposed method with f-measure for clustering Hepatitis E virus genotypes. It was demonstrated that the proposed method integrating the overlapping structures and the background information of words significantly improves biological sequence comparison and outperforms the existing models

    ÁttekintĂ©s a mƱfajkutatĂĄs tendenciĂĄirĂłl Ă©s lehetƑsĂ©geirƑl. Útban egy kognitĂ­v szemlĂ©letƱ mƱfajelmĂ©let felĂ©

    Get PDF
    <p>Delta, theta, alpha and beta band power at different locations during the walking test (ÎŒV<sup>2</sup>).</p

    Changes of Intracellular Porphyrin, Reactive Oxygen Species, and Fatty Acids Profiles During Inactivation of Methicillin-Resistant Staphylococcus aureus by Antimicrobial Blue Light

    Get PDF
    Antimicrobial blue light (aBL) has attracted increasing interest for its antimicrobial properties. However, the underlying bactericidal mechanism has not yet been verified. One hypothesis is that aBL causes the excitation of intracellular chromophores; leading to the generation of reactive oxygen species (ROS) and the resultant oxidization of various biomolecules. Thus, monitoring the levels of redox-sensitive intracellular biomolecules such as coproporphyrins, as well as singlet oxygen and various ROS may help to uncover the physiological changes induced by aBL and aid in establishing the underlying mechanism of action. Furthermore, the identification of novel targets of ROS, such as fatty acids, is of potential significance from a therapeutic perspective. In this study, we sought to investigate the molecular impact of aBL treatment on methicillin-resistant Staphylococcus aureus (MRSA). The results showed that aBL (5–80 J/cm2) exhibited a bactericidal effect on MRSA, and almost no bacteria survived when 80 J/cm2 had been delivered. Further studies revealed that the concentrations of certain intracellular molecules varied in response to aBL irradiation. Coproporphyrin levels were found to decrease gradually, while ROS levels increased rapidly. Moreover, imaging revealed the emergence and increase of singlet oxygen molecules. Concomitantly, the lipid peroxidation product malondialdehyde (MDA) increased in abundance and intracellular K+ leakage was observed, indicating permeability of the cell membrane. Atomic force microscopy showed that the cell surface exhibited a coarse appearance. Finally, fatty acid profiles at different illumination levels were monitored by GC-MS. The relative amounts of three unsaturated fatty acids (C16:1, C20:1, and C20:4) were decreased in response to aBL irradiation, which likely played a key role in the aforementioned membrane injuries. Collectively, these data suggest that the cell membrane is a major target of ROS during aBL irradiation, causing alterations to membrane lipid profiles, and in particular to the unsaturated fatty acid component

    The Potential Antipyretic Mechanism of Gardeniae Fructus and Its Heat-Processed Products With Plasma Metabolomics Using Rats With Yeast-Induced Fever

    Get PDF
    Gardeniae Fructus (GF), prepared GF (GFP), and carbonized GF (GFC) are widely used in China for the treatment of fever. However, the involved antipyretic mechanism has not been fully elucidated. In this study, rectal temperature and pyrogenic cytokines were used to evaluate the antipyretic effect of raw and processed GF in rats with dry-yeast-induced pyrexia. Reverse phase and hydrophilic interaction liquid chromatography and ultra-high-performance liquid chromatography/mass spectrometry were used to acquire the metabolomics profile of GF, GFP, and GFC in rats with pyrexia. The results showed that the rectal temperature of rats treated with GF, GFP, and GFC was suppressed after 6 h (P &lt; 0.05), compared with that observed in pyrexia model rats. The enzyme-linked immunosorbent assay showed that the expression of tumor necrosis factor α and interleukin 6 were suppressed by GF, GFP, and GFC. Moreover, GFC suppressed the expression of interleukin 6 significantly (P &lt; 0.01). Of note, 11, 15, and 25 feature metabolites were identified in the GF, GFP, and GFC groups. Pathway analysis showed that GF mainly regulated the biosynthesis of valine, leucine, and isoleucine. Notably, GFP was involved in glycerophospholipid metabolism, while GFC was linked to glycerophospholipid and sphingolipid metabolism. These results suggested that GF, GFP, and GFC maintained their antipyretic effect despite heat processing. However, heat processing altered endogenous feature metabolites and certain pathways of GF, GFP, and GFC in rats with yeast-induced pyrexia to exert an antipyretic effect

    Genome-Wide CRISPR Screening Identifies JAK1 Deficiency as a Mechanism of T-Cell Resistance

    Get PDF
    Somatic gene mutations play a critical role in immune evasion by tumors. However, there is limited information on genes that confer immunotherapy resistance in melanoma. To answer this question, we established a whole-genome knockout B16/ovalbumin cell line by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease technology, and determined by in vivo adoptive OT-I T-cell transfer and an in vitro OT-I T-cell-killing assay that Janus kinase (JAK)1 deficiency mediates T-cell resistance via a two-step mechanism. Loss of JAK1 reduced JAK-Signal transducer and activator of transcription signaling in tumor cells—resulting in tumor resistance to the T-cell effector molecule interferon—and suppressed T-cell activation by impairing antigen presentation. These findings provide a novel method for exploring immunotherapy resistance in cancer and identify JAK1 as potential therapeutic target for melanoma treatment

    Functional and structural analysis of a novel splice site HMBS variant in a Chinese AIP patient

    Get PDF
    Background: Acute intermittent porphyria (AIP) is a rare metabolic disorder that results from mutations in the gene encoding hydroxymethylbilane synthase (HMBS), an enzyme involved in heme biosynthesis. AIP follows an autosomal dominant inheritance pattern, but most carriers are asymptomatic. The clinical manifestations of AIP include acute attacks of abdominal pain and neuropsychiatric disturbances. The pathogenicity of novel HMBS variants identified in Chinese patients has not been well established.Objective: The article aims to identify the pathogenic mutation in an AIP patient and prove its pathogenicity through in vitro experiments.Methods: A 22-year-old female diagnosed with AIP participated in the study. Variant screening of her HMBS gene was carried out through Sanger sequencing. To ascertain the consequences of the newly discovered variant, we conducted in vitro experimentation targeting HMBS gene expression and enzymatic function. Additionally, protein structure analysis was performed. Cycloheximide treatment and UPF1-specific siRNA knockdown were employed to assess the impact of the mutation on the mechanism of non-sense-mediated mRNA decay (NMD).Results: A novel splice site variant in the HMBS gene (c.648_651+1delCCAGG) was detected in the patient, which caused aberrant mRNA splicing. In vitro experiments demonstrated that this variant significantly decreased the expression of HMBS. Further investigation confirmed that this decrease was due to NMD. Additionally, structural analysis indicated that this variant would destabilize the HMBS protein and impair its catalytic activity. To gain a comprehensive understanding of HMBS mutations in the context of AIP, we conducted a literature search on PubMed using the keywords ‘HMBS’ and ‘Acute intermittent porphyria’ from 2013 to 2023. This search yielded 19 clinical case reports written in English, which collectively described 220 HMBS gene mutations worldwide.Conclusion: The study identified and proved the pathogenicity of a novel splice site HMBS variant for the first time. Our results elucidated the pathological mechanism by which this mutation causes AIP through reducing HMBS expression and activity. These findings provide theoretical guidance for the diagnosis, treatment and genetic counseling of AIP patients

    High-surface-area, iron-oxide films prepared by atomic layer deposition on \u3b3-Al2O3

    Get PDF
    High-surface-area iron oxides were prepared by Atomic Layer Deposition (ALD) on 130-m(2)/g gamma-Al2O3 for use as a catalyst support. Measurements of the sample mass, surface area, and pore-size distribution as a function of the number of ferrocene-O-2 ALD cycles at 623 K suggested that the iron oxide grew as a dense, conformal film with a growth rate similar to 0.016-nm per cycle. While films with 20 ALD cycles (20Fe(2)O(3)Al(2)O(3), 0.25 g Fe2O3/g Al2O3) were difficult to distinguish by HAADF STEM, EDS mapping indicated the Al2O3 was uniformly coated. Raman Spectroscopy showed the films were in the form of Fe2O3; but XRD measurements on samples with as many as 100 ALD cycles (100Fe(2)O(3)-Al2O3, 0.84g Fe2O3/g Al2O3) showed no evidence for crystalline iron-oxide phases, even after calcination at 1073 K. Specific rates for the water-gas-shift (WGS) reaction on the ALD-coated samples were significantly lower than those on bulk Fe2O3. However, addition of 1 wt.% Pd to Fe2O3/Al2O3 supports prepared by ALD exhibited specific rates that were much higher than that observed when I wt.% Pd was added to Fe2O3/Al2O3 prepared by conventional impregnation of Fe salts, suggesting more uniform contact between the Pd and FeOx phases on samples prepared by ALD
    • 

    corecore