20 research outputs found

    Unveiling the pathogenesis and therapeutic approaches for diabetic nephropathy: insights from panvascular diseases

    Get PDF
    Diabetic nephropathy (DN) represents a significant microvascular complication in diabetes, entailing intricate molecular pathways and mechanisms associated with cardiorenal vascular diseases. Prolonged hyperglycemia induces renal endothelial dysfunction and damage via metabolic abnormalities, inflammation, and oxidative stress, thereby compromising hemodynamics. Concurrently, fibrotic and sclerotic alterations exacerbate glomerular and tubular injuries. At a macro level, reciprocal communication between the renal microvasculature and systemic circulation establishes a pernicious cycle propelling disease progression. The current management approach emphasizes rigorous control of glycemic levels and blood pressure, with renin-angiotensin system blockade conferring renoprotection. Novel antidiabetic agents exhibit renoprotective effects, potentially mediated through endothelial modulation. Nonetheless, emerging therapies present novel avenues for enhancing patient outcomes and alleviating the disease burden. A precision-based approach, coupled with a comprehensive strategy addressing global vascular risk, will be pivotal in mitigating the cardiorenal burden associated with diabetes

    Spin-ARPES EUV beamline for ultrafast materials research and development

    Get PDF
    A new femtosecond, Extreme Ultraviolet (EUV), Time Resolved Spin-Angle Resolved Photo-Emission Spectroscopy (TR-Spin-ARPES) beamline was developed for ultrafast materials research and development. This 50-fs laser-driven, table-top beamline is an integral part of the "Ultrafast Spintronic Materials Facility", dedicated to engineering ultrafast materials. This facility provides a fast and in-situ analysis and development of new materials. The EUV source based on high harmonic generation process emits 2.3 × 1011 photons/second (2.3 × 108 photons/pulse) at H23 (35.7 eV) and its photon energy ranges from 10 eV to 75 eV, which enables surface sensitive studies of the electronic structure dynamics. The EUV monochromator provides the narrow bandwidth of the EUV beamline while preserving its pulse duration in an energy range of 10-100 eV. Ultrafast surface photovoltaic effect with ~650 fs rise-time was observed in p-GaAs (100) from time-resolved ARPES spectra. The data acquisition time could be reduced by over two orders of magnitude by scaling the laser driver from 1 KHz, 4W to MHz, KW average power

    Targeting BDNF with acupuncture: A novel integrated strategy for diabetes and depression comorbidity

    No full text
    Diabetes and depression are common comorbid conditions that impose a substantial health burden. Acupuncture may effectively improve symptoms in patients with diabetes and depression, but the underlying mechanism remains unclear. Brain-derived neurotrophic factor (BDNF) may play a vital role in the effects of acupuncture on diabetes and depression comorbidity. This review summarizes the potential role of BDNF in acupuncture for diabetes and depression comorbidity. BDNF appears to exert its effects via the BDNF-TrkB-ERK-CREB signaling pathway. BDNF levels are reduced in diabetes and depression, and acupuncture may increase BDNF expression, improving symptoms and glycemic control. High-quality research is needed to validate the efficacy of acupuncture for diabetes and depression comorbidity. Randomized controlled trials and mechanistic studies should investigate the BDNF pathway and other potential mechanisms. Improved understanding of the links between diabetes, depression and acupuncture may enable targeted and individualized patient care. Earlier diagnosis and management of diabetes and depression comorbidity should also be a priority

    The Roles of β-Integrin of Chinese Shrimp (Fenneropenaeus chinensis) in WSSV Infection

    No full text
    Our previous study demonstrated that an integrin β subunit of Chinese shrimp (Fenneropenaeus chinensis) (FcβInt) plays an important role in white spot syndrome virus (WSSV) infection. In the present work, in order to further elucidate the potential role of FcβInt in WSSV infection, the recombinant extracellular domain of β integringene of F. Chinensis (rFcβInt-ER) was expressed in Escherichia coli BL21 (DE3), and the eukaryotic expression plasmid PcDNA3.1-FcβInt-ER (PFcβInt-ER) was also constructed. Far-western blotting was performed to determine the binding specificity of rFcβInt-ER to WSSV envelope proteins, and results showed that rFcβInt-ER was able to specifically interact with rVP31, rVP37, rVP110 and rVP187. Moreover, the blocking effects of mouse anti-rFcβint-ER antibodies were both detected in vivo and in vitro. The ELISA and Dot-blotting in vitro assays both showed that mouse anti-rFcβInt-ER antibodies could partially block the binding of WSSV to the hemocyte membrane of F. chinensis. In the in vivo assays, the mortality of shrimp injected with WSSV mixed with anti-rFcβInt-ER antibodies was delayed, and was lower than in the control group. While the shrimp were intramuscularly injected with PFcβInt-ER, transcripts of PFcβInt-ER could be detected in different shrimp tissues within 7 days, and the mortality of shrimp injected with PFcβInt-ER was also delayed and lower compared with the control group post WSSV challenge. Furthermore, gene silencing technology was also used to verify the effect of FcβInt in WSSV infection, and results showed that the expression levels of the WSSV immediate early gene iel, early gene wsv477, and late gene VP28 and the mortality of F. Chinensis were all significantly decreased in the FcβInt knock-down hemocyctes compared to the control group. Taken together, these results suggest that FcβInt plays important roles in WSSV infection

    Effects of frozen storage on texture, chemical quality indices and sensory properties of crisp Nile tilapia fillets

    No full text
    Crisp Nile tilapia (Oreochromis niloticus) is a kind of valuable fish product with high muscle firmness and crispiness texture. However, with the change of physicochemical in crisp Nile tilapia, the frozen storage parameters and quality would be different comparing to normal Nile tilapia. Thus, the aim of this study was to analyze the changes in texture, chemical quality indices and volatile compounds of Nile tilapia fillets during frozen storage. The remaining storage time of the crisp Nile tilapia fillets could be estimated within 120 days. During frozen storage, fillets resulted in softer started at 90-day, and 36.75%, 45.74%, 48.81% and 20.37% reduction of hardness, springiness, gumminess and chewiness were observed at 120-day. Thiobarbituric acid reactive substances (TBARS) for frozen samples showed similar with fresh fillets within 60 days, while the TBARS was 1.97 folds higher than fresh one at 120-day. Low-field nuclear magnetic resonance (LF-NMR) indicated that the water loss of Nile tilapia fillets was significant changed at 120-day, which reduced more than 12.5% water out of weight. The volatile compound analysis showed that more free fatty acid will be detected at 120-day comparing to the fresh fillets. The combined results demonstrated that the crisp Nile tilapia fillets had the best quality before 60 days frozen storage then loss of some quality properties in longer freezing. Thus, these results identified the ideal storage strategy for the preservation of crisp Nile tilapia without affecting sensory appeal and commercial value

    Single-Atom Sn on Tensile-Strained ZnO Nanosheets for Highly Efficient Conversion of CO2 into Formate

    No full text
    In general, commercial ZnO owns the poor selectivity and activity toward electroreduction CO2 to formate. In contrast, the numbers of Sn-based nanomaterials are reported as excellent electrocatalysts for formate production, however, the metallic Sn is more expensive than Zn. In this study, it is demonstrated that an atomically dispersed Sn on a tensile-strained ZnO nanosheet (Sn SA/ZnO) shows dramatically improved activity and selectivity for formate production over a wide potential window compared with that of commercial ZnO. Especially, Sn SA/ZnO exhibits 205-fold mass activity enhancement than the commercial Sn at -1.7 V versus reversible hydrogen electrode normalized with element Sn. The experimental measurements combined with theoretical calculations revealed that Sn SA/ZnO can effectively capture and activate CO2 by its exposed double-active sites (Sn and O), while the tensile strain on its surface boosts the catalytic selectivity by strengthening the adsorption of the *HCOO intermediate for the electrochemical reduction of CO2 to formate
    corecore