185 research outputs found

    Endogenous Business Cycles with Consumption Externalities

    Get PDF
    Empirical evidences tell us that in the recent years the expansion period is increased with reduction of the contraction period in the U.S. business cycles. Moreover, the business cycles in the United States also show the trend to be moderated with recent economic growth induced and supported by high technologies and their industries. We study endogenous business cycles by a modified synthesized endogenous business cycles model “in which expansions are neoclassical growth periods driven by productivity improvements and capital accumulation, while downturns are the results of Keynesian contractions in aggregate demand†(Francois and Lloyd-Ellis, 2002), with consumption externalities. By considering consumption externalities, the endogenized business cycles will be more likely to happen, the optimal consumption level will be higher, the technology growth rate will be bigger, the length of expansion will be longer and the length of contraction will be shorter. All of these results will lead to a faster and longer economic growth and smoother cycles. These theoretical results are significantly different from those in circumstances without the consumption externalities Francois and Lloyd-Ellis (2002) obtained, and are strongly supported by the data from the United States in the different periods.Endogenous Business Cycle, Consumption Externality, Endogenous Growth

    MILL: Mutual Verification with Large Language Models for Zero-Shot Query Expansion

    Full text link
    Query expansion is a commonly-used technique in many search systems to better represent users' information needs with additional query terms. Existing studies for this task usually propose to expand a query with retrieved or generated contextual documents. However, both types of methods have clear limitations. For retrieval-based methods, the documents retrieved with the original query might not be accurate enough to reveal the search intent, especially when the query is brief or ambiguous. For generation-based methods, existing models can hardly be trained or aligned on a particular corpus, due to the lack of corpus-specific labeled data. In this paper, we propose a novel Large Language Model (LLM) based mutual verification framework for query expansion, which alleviates the aforementioned limitations. Specifically, we first design a query-query-document generation pipeline, which can effectively leverage the contextual knowledge encoded in LLMs to generate sub-queries and corresponding documents from multiple perspectives. Next, we employ a mutual verification method for both generated and retrieved contextual documents, where 1) retrieved documents are filtered with the external contextual knowledge in generated documents, and 2) generated documents are filtered with the corpus-specific knowledge in retrieved documents. Overall, the proposed method allows retrieved and generated documents to complement each other to finalize a better query expansion. We conduct extensive experiments on three information retrieval datasets, i.e., TREC-DL-2020, TREC-COVID, and MSMARCO. The results demonstrate that our method outperforms other baselines significantly

    Distractor-aware Event-based Tracking

    Full text link
    Event cameras, or dynamic vision sensors, have recently achieved success from fundamental vision tasks to high-level vision researches. Due to its ability to asynchronously capture light intensity changes, event camera has an inherent advantage to capture moving objects in challenging scenarios including objects under low light, high dynamic range, or fast moving objects. Thus event camera are natural for visual object tracking. However, the current event-based trackers derived from RGB trackers simply modify the input images to event frames and still follow conventional tracking pipeline that mainly focus on object texture for target distinction. As a result, the trackers may not be robust dealing with challenging scenarios such as moving cameras and cluttered foreground. In this paper, we propose a distractor-aware event-based tracker that introduces transformer modules into Siamese network architecture (named DANet). Specifically, our model is mainly composed of a motion-aware network and a target-aware network, which simultaneously exploits both motion cues and object contours from event data, so as to discover motion objects and identify the target object by removing dynamic distractors. Our DANet can be trained in an end-to-end manner without any post-processing and can run at over 80 FPS on a single V100. We conduct comprehensive experiments on two large event tracking datasets to validate the proposed model. We demonstrate that our tracker has superior performance against the state-of-the-art trackers in terms of both accuracy and efficiency

    Visible-Light-Driven Rotation of Molecular Motors in Discrete Supramolecular Metallacycles

    Get PDF
    The organization of molecular motors in supramolecular assemblies to allow the amplification and transmission of motion and collective action is an important step toward future responsive systems. Metal-coordination-driven directional self-assembly into supramolecular metallacycles provides a powerful strategy to position several motor units in larger structures with well-defined geometries. Herein, we present a pyridyl-modified molecular motor ligand (MPY) which upon coordination with geometrically distinct di-Pt(II) acceptors assembles into discrete metallacycles of different sizes and shapes. This coordination leads to a red-shift of the absorption bands of molecular motors, making these motorized metallacycles responsive to visible light. Photochemical and thermal isomerization experiments demonstrated that the light-driven rotation of the motors in the metallacycles is similar to that in free MPY in solution. CD studies show that the helicity inversions associated with each isomerization step in the rotary cycle are preserved. To explore collective motion, the trimeric motor-containing metallacycle was aggregated with heparin through multiple electrostatic interactions, to construct a multi-component hierarchical system. SEM, TEM, and DLS measurements revealed that the photo- and thermal-responsive molecular motor units enabled selective manipulation of the secondary supramolecular aggregation process without dissociating the primary metallacycle structures. These visible-light-responsive metallacycles, with intrinsic multiple rotary motors, offer prospects for cooperative operations, dynamic hierarchical self-assembled systems, and adaptive materials

    Acetate suppresses myocardial contraction via the short-chain fatty acid receptor GPR43

    Get PDF
    The heart has high energy requirements, with an estimated 40%–60% of myocardial ATP production derived from the oxidation of fatty acids under physiological conditions. However, the effect of short-chain fatty acids on myocardial contraction remains controversial, warranting further research. The present study sought to investigate the effects and mechanisms of acetate, a short-chain fatty acid, on myocardial contraction in rat ventricular myocytes. Echocardiography and Langendorff heart perfusion were used to evaluate cardiac function. Cell shortening and calcium transient were measured in isolated cardiomyocytes. The patch-clamp method determined the action potential and L-type Ca2+ current in cardiomyocytes. Moreover, the expression of GPR43, a type of short-chain fatty acid receptors in cardiomyocytes was examined by immunofluorescent staining and Western blot. We demonstrated that acetate transiently reduced left ventricular developmental pressure in isolated Langendorff heart perfusion model, with no effect on stroke volume and cardiac output in vivo. In addition, acetate transiently and reversibly inhibited cardiomyocyte contraction and calcium transient. Acetate did not affect the action potential and L-type Ca2+ currents in cardiomyocytes. As a short-chain fatty acid receptor, GPR43 was expressed in rat cardiomyocytes. Furthermore, the GPR43 antagonist GLPG0974 prevented the acetate-induced inhibitory effect on myocardial contraction. We conclude that acetate transiently inhibits contraction via the short-chain fatty acid receptor GPR43 in cardiomyocytes

    28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell

    Get PDF
    Stacking perovskite solar cells onto crystalline silicon bottom cells in a monolithic tandem configuration enables power-conversion efficiencies (PCEs) well above those of their single-junction counterparts. However, state-of-the-art wide-band-gap perovskite films suffer from phase stability issues. Here, we show how carbazole as an additive to the perovskite precursor solution can not only reduce nonradiative recombination losses but, perhaps more importantly, also can suppress phase segregation under exposure to moisture and light illumination. This enables a stabilized PCE of 28.6% (independently certified at 28.2%) for a monolithic perovskite/silicon tandem solar cell over ∼1 cm2 and 27.1% over 3.8 cm2, built from a textured silicon heterojunction solar cell. The modified tandem devices retain ∼93% of their performance over 43 days in a hot and humid outdoor environment of almost 100% relative humidity over 250 h under continuous 1-sun illumination and about 87% during a 85/85 damp-heat test for 500 h, demonstrating the improved phase stability
    corecore