71 research outputs found
On the mechanism of the cyclonic circulation in the Gulf of Tonkin in the summer
Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C09029, doi:10.1029/2007JC004208.The circulation in the Gulf of Tonkin had been traditionally considered to be anticyclonic in the summer. This view was challenged recently by results from reanalyzing observational data, which clearly revealed that the circulation is cyclonic in all seasons. The surface wind stress is monsoonal, southwesterly in the summer and reversed in the winter. It remains unexplained why the circulation is always cyclonic, while the surface forcing reverses seasonally. In this study, we hypothesize that the inflow through Qiongzhou Strait, a shallow and narrow channel between Hainan Island and the Chinese mainland, is responsible for maintaining the cyclonic circulation in the summer. Besides the requirements of mass conservation and bathymetry constraint, this flow, even with a rather small transport, carries a considerable amount of potential vorticity (PV) into the gulf, and the integral constraint of PV requires the presence of a frictional torque to be associated with a cyclonic circulation. Several numerical experiments with a three-dimensional model have been conducted to test this hypothesis. When the westward flow through Qiongzhou Strait is blocked, the model simulates an anticyclonic circulation in the summer. When the westward flow through Qiongzhou Strait is allowed, the circulation changes to a cyclonic one, consistent with our hypothesis.This study is supported by the National Basic
Research Program of China under contract 2005CB422302 and
2007CB411804, the key project of the International Science and Technology
Cooperation program of China under contract 2006DFB21250, and the
111 project under contract B07036
Caspase-11–mediated endothelial pyroptosis underlies endotoxemia-induced lung injury
Acute lung injury is a leading cause of death in bacterial sepsis due to the wholesale destruction of the lung endothelial barrier, which results in protein-rich lung edema, influx of proinflammatory leukocytes, and intractable hypoxemia. Pyroptosis is a form of programmed lytic cell death that is triggered by inflammatory caspases, but little is known about its role in EC death and acute lung injury. Here, we show that systemic exposure to the bacterial endotoxin lipopolysaccharide (LPS) causes severe endothelial pyroptosis that is mediated by the inflammatory caspases, human caspases 4/5 in human ECs, or the murine homolog caspase-11 in mice in vivo. In caspase-11–deficient mice, BM transplantation with WT hematopoietic cells did not abrogate endotoxemia-induced acute lung injury, indicating a central role for nonhematopoietic caspase-11 in endotoxemia. Additionally, conditional deletion of caspase-11 in ECs reduced endotoxemia-induced lung edema, neutrophil accumulation, and death. These results establish the requisite role of endothelial pyroptosis in endotoxemic tissue injury and suggest that endothelial inflammatory caspases are an important therapeutic target for acute lung injury
Cerebrospinal fluid oligoclonal bands in Chinese patients with multiple sclerosis: the prevalence and its association with clinical features
BackgroundCerebrospinal fluid oligoclonal band (CSF-OCB) is an established biomarker in diagnosing multiple sclerosis (MS), however, there are no nationwide data on CSF-OCB prevalence and its diagnostic performance in Chinese MS patients, especially in the virtue of common standard operation procedure (SOP).MethodsWith a consensus SOP and the same isoelectric focusing system, we conducted a nationwide multi-center study on OCB status in consecutively, and recruited 483 MS patients and 880 non-MS patients, including neuro-inflammatory diseases (NID, n = 595) and non-inflammatory neurological diseases (NIND, n=285). Using a standardized case report form (CRF) to collect the clinical, radiological, immunological, and CSF data, we explored the association of CSF-OCB positivity with patient characters and the diagnostic performance of CSF-OCB in Chinese MS patients. Prospective source data collection, and retrospective data acquisition and statistical data analysis were used.Findings369 (76.4%) MS patients were OCB-positive, while 109 NID patients (18.3%) and 6 NIND patients (2.1%) were OCB-positive, respectively. Time from symptom onset to diagnosis was significantly shorter in OCB-positive than that in OCB-negative MS patients (13.2 vs 23.7 months, P=0.020). The prevalence of CSF-OCB in Chinese MS patients was significantly higher in high-latitude regions (41°-50°N)(P=0.016), and at high altitudes (>1000m)(P=0.025). The diagnostic performance of CSF-OCB differentiating MS from non-MS patients yielded a sensitivity of 76%, a specificity of 87%.InterpretationThe nationwide prevalence of CSF-OCB was 76.4% in Chinese MS patients, and demonstrated a good diagnostic performance in differentiating MS from other CNS diseases. The CSF-OCB prevalence showed a correlation with high latitude and altitude in Chinese MS patients
The effects of chronic, low doses of Ra-226 on cultured fish and human cells
Ra-medium over 9 passages for about 134 days, the clonogenic surviving fractions for cells irradiated at dose rates ranging from 0.00066 to 0.66 mGy/d were significantly lower than that of cells sham irradiated. For HaCaT cells grown in medium containing the same range of 226 Ra activity, the clonogenic surviving fraction decreased at first and reached the lowest value at about 42 days (8 passages). After that, the clonogenic survival began to increase, and was significantly higher than that of control cells by the end of the experimental period. Conclusion: The chronic, low-dose high LET radiation from 226 Ra can influence the clonogenic survival of irradiated cells. CHSE/F cells were sensitized by the radiation, and HaCaT cells were initially sensitized but later appeared to be adapted. The results could have implications for determining risk from chronic versus acute exposures to radium
Lily Cultivars Have Allelopathic Potential in Controlling Orobanche aegyptiaca Persoon
As a devastating holoparasitic weed, Orobanche aegyptiaca Persoon. (Egyptian broomrape) causes serious damage to agricultural production and threatens economic development, which has raised widespread concern. The present study was conducted to determine whether lilies have the potential to be used as 'trap crops' for controlling O. aegyptiaca Persoon. In the experiments, the ability of three popular lily cultivars (Lilium Oriental hybrids 'Sorbonne', Lilium LA (Longiflorum hybrids x Asiatic hybrids) hybrids 'Ceb Dazzle', and Lilium Longiflorum hybrids (L. formosanum x L. longiflorum) 'L. formolongo') to induce O. aegyptiaca Persoon. seed germination was assessed. Parts of the three lily cultivars, including the rhizosphere soil and underground and above-ground organs, all induced "suicidal germination" of parasitic O. aegyptiaca Persoon. seed at four growth stages. Specifically, Sorbonne and Ceb Dazzle behaved with similar allelopathy, and the bulb, scale leaf and aerial stem exhibited stronger allelopathic effects on O. aegyptiaca Pers. germination compared to other organs. Aqueous L. formolongo leaf extracts may contain more stable, effective stimulants given that they induced the highest germination rate at 76.7% even though the extracts were serially diluted. We speculate that these organs may be advantageous in further isolating and purifying economical active substances that can be substitutes for GR24. These results indicate that lilies have the potential to be used as a trap crops or can be processed into green herbicide formulations that can be applied in agriculture production to rapidly deplete the seed bank of O. aegyptiaca Persoon. parasitic weeds in soil
Consistency Checks for Pressure-Volume-Temperature Experiment of Formation Oil and Gas at High Temperature
The oil and gas phase behavior of high temperature is complex and changeable, which is usually obtained by PVT experiments. The accuracy of the experiment data plays a crucial role in the reserve evaluation and development plan of oil and gas reservoirs. However, the current PVT experiment consistency checks are not suitable for high-temperature reservoir conditions. This paper proposes a systematic check method for the PVT experiment data consistency at high temperature. These checks revise the material balance method, Hoffman method, and equilibrium constant method by using the equilibrium constant calculation method at high temperature. The consistency check of component data and constant volume depletion experiment data is carried out by combining the three improved methods with the component check method, so as to judge the experiment data accurately. In this paper, two high-temperature reservoir fluids—gas condensate sample fluid X and volatile oil sample fluid Y—are selected to carry out consistency checks with component data and constant volume depletion data. This check method is of great significance to study the phase behavior of formation oil and gas at high temperature, especially for volatile oil and gas condensate fluid
Induction of <i>O</i>. <i>aegyptiaca</i> Pers. germination by aqueous and methanol extracts of lily underground (A) and above-ground (B) organs at the flowering stage.
<p>Two types of organs were tested, (A) underground organs and (B) above-ground organs. Two types of extracts were tested, (A1 and B1) aqueous and (A2 and B2) methanol. Four concentrations of extracts were assessed: undiluted and 10-fold, 100-fold and 1000-fold dilutions. Abbreviations: R-Sor, root extracts of Sorbonne; R-Ceb, root extracts of Ceb Dazzle; B-Sor, bulb extracts of Sorbonne; B-Ceb, bulb extracts of Ceb Dazzle; S-Sor, scale leaf extracts of Sorbonne; S-Ceb, scale leaf extracts of Ceb Dazzle; P-Sor, prop root extracts of Sorbonne; P-Ceb, prop root extracts of Ceb Dazzle; P-Lor, prop root extracts of <i>L</i>.<i>formolongo</i>.; A-Sor, aerial stem extracts of Sorbonne; A-Ceb, aerial stem extracts of Ceb Dazzle; A-Lor, aerial stem extracts of <i>L</i>.<i>formolongo</i>.; L-Sor, leaf extracts of Sorbonne; L-Ceb, leaf extracts of Ceb Dazzle; L-Lor, leaf extracts of <i>L</i>.<i>formolongo</i>; CK1, GR24 as positive control; CK2, Distilled water as negative control; CK3, Methanol as negative control. The dotted black lines represent 20% and 40% position, respectively. Error bars represent the standard error of the mean. Different small letters above the error bars indicate significant differences at 0.05 (ANOVA and Duncan's multiple range test). Matching letters in the same color column indicates that there were no significant differences between treatments.</p
- …