30 research outputs found

    A novel assay based on DNA melting temperature for multiplexed identification of SARS-CoV-2 and influenza A/B viruses

    Get PDF
    IntroductionThe severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and influenza viruses can cause respiratory illnesses with similar clinical symptoms, making their differential diagnoses challenging. Additionally, in critically ill SARS-CoV-2–infected patients, co-infections with other respiratory pathogens can lead to severe cytokine storm and serious complications. Therefore, a method for simultaneous detection of SARS-CoV-2 and influenza A and B viruses will be clinically beneficial.MethodsWe designed an assay to detect five gene targets simultaneously via asymmetric PCR-mediated melting curve analysis in a single tube. We used specific probes that hybridize to corresponding single-stranded amplicons at low temperature and dissociate at high temperature, creating different detection peaks representing the targets. The entire reaction was conducted in a closed tube, which minimizes the risk of contamination. The limit of detection, specificity, precision, and accuracy were determined.ResultsThe assay exhibited a limit of detection of <20 copies/μL for SARS-CoV-2 and influenza A and <30 copies/μL for influenza B, with high reliability as demonstrated by a coefficient of variation for melting temperature of <1.16% across three virus concentrations. The performance of our developed assay and the pre-determined assay showed excellent agreement for clinical samples, with kappa coefficients ranging from 0.98 (for influenza A) to 1.00 (for SARS-CoV-2 and influenza B). No false-positive, and no cross-reactivity was observed with six common non-influenza respiratory viruses.ConclusionThe newly developed assay offers a straightforward, cost-effective and nucleic acid contamination-free approach for simultaneous detection of the SARS-CoV-2, influenza A, and influenza B viruses. The method offers high analytical sensitivity, reliability, specificity, and accuracy. Its use will streamline testing for co-infections, increase testing throughput, and improve laboratory efficacy

    Reduction in Clostridium difficile infection rates after mandatory hospital public reporting: findings from a longitudinal cohort study in Canada.

    Get PDF
    BackgroundThe role of public reporting in improving hospital quality of care is controversial. Reporting of hospital-acquired infection rates has been introduced in multiple health care systems, but its relationship to infection rates has been understudied. Our objective was to determine whether mandatory public reporting by hospitals is associated with a reduction in hospital rates of Clostridium difficile infection.Methods and findingsWe conducted a longitudinal, population-based cohort study in Ontario (Canada's largest province) between April 1, 2002, and March 31, 2010. We included all patients (>1 y old) admitted to 180 acute care hospitals. Using Poisson regression, we developed a model to predict hospital- and age-specific monthly rates of C. difficile disease per 10,000 patient-days prior to introduction of public reporting on September 1, 2008. We then compared observed monthly rates of C. difficile infection in the post-intervention period with rates predicted by the pre-intervention predictive model. In the pre-intervention period there were 33,634 cases of C. difficile infection during 39,221,113 hospital days, with rates increasing from 7.01 per 10,000 patient-days in 2002 to 10.79 in 2007. In the first calendar year after the introduction of public reporting, there was a decline in observed rates of C. difficile colitis in Ontario to 8.92 cases per 10,000 patient-days, which was significantly lower than the predicted rate of 12.16 (95% CI 11.35-13.04) cases per 10,000 patient-days (pConclusionsPublic reporting of hospital C. difficile rates was associated with a substantial reduction in the population burden of this infection. Future research will be required to discern the direct mechanism by which C. difficile infection rates may have been reduced in response to public reporting. Please see later in the article for the Editors' Summary

    Fear Conditioning Downregulates Rac1 Activity in the Basolateral Amygdala Astrocytes to Facilitate the Formation of Fear Memory

    No full text
    Astrocytes are well known to scale synaptic structural and functional plasticity, while the role in learning and memory, such as conditioned fear memory, is poorly elucidated. Here, using pharmacological approach, we find that fluorocitrate (FC) significantly inhibits the acquisition of fear memory, suggesting that astrocyte activity is required for fear memory formation. We further demonstrate that fear conditioning downregulates astrocytic Rac1 activity in basolateral amygdala (BLA) in mice and promotes astrocyte structural plasticity. Ablation of astrocytic Rac1 in BLA promotes fear memory acquisition, while overexpression or constitutive activation of astrocytic Rac1 attenuates fear memory acquisition. Furthermore, temporal activation of Rac1 by photoactivatable Rac1 (Rac1-PA) induces structural alterations in astrocytes and in vivo activation of Rac1 in BLA astrocytes during fear conditioning attenuates the formation of fear memory. Taken together, our study demonstrates that fear conditioning-induced suppression of BLA astrocytic Rac1 activity, associated with astrocyte structural plasticity, is required for the formation of conditioned fear memory

    Engineering photonic environments for two-dimensional materials

    No full text
    A fascinating photonic platform with a small device scale, fast operating speed, as well as low energy consumption is two-dimensional (2D) materials, thanks to their in-plane crystalline structures and out-of-plane quantum confinement. The key to further advancement in this research field is the ability to modify the optical properties of the 2D materials. The modifications typically come from the materials themselves, for example, altering their chemical compositions. This article reviews a comparably less explored but promising means, through engineering the photonic surroundings. Rather than modifying materials themselves, this means manipulates the dielectric and metallic environments, both uniform and nanostructured, that directly interact with the materials. For 2D materials that are only one or a few atoms thick, the interaction with the environment can be remarkably efficient. This review summarizes the three degrees of freedom of this interaction: weak coupling, strong coupling, and multifunctionality. In addition, it reviews a relatively timing concept of engineering that directly applied to the 2D materials by patterning. Benefiting from the burgeoning development of nanophotonics, the engineering of photonic environments provides a versatile and creative methodology of reshaping light–matter interaction in 2D materials

    An insecticide target in mechanoreceptor neurons

    No full text
    Hundreds of neurotoxic insecticides are currently in use. However, only a few direct targets have been identified. Here, using Drosophila and the insecticide flonicamid, we identified nicotinamidase (Naam) as a previous unidentified molecular target for an insecticide. Naam is expressed in chordotonal stretch-receptor neurons, and inhibition of Naam by a metabolite of flonicamid, TFNA-AM (4-trifluoromethylnicotinamide), induces accumulation of substrate nicotinamide and greatly inhibits negative geotaxis. Engineered flies harboring a point mutation in the active site show insecticide resistance and defects in gravity sensing. Bees are resistant to flonicamid because of a gene duplication, resulting in the generation of a TFNA-AM-insensitive Naam. Our results, in combination with the absence of genes encoding Naam in vertebrate genomes, suggest that TFNA-AM and potential species-specific Naam inhibitors could be developed as novel insecticides, anthelmintics, and antimicrobials for agriculture and human health

    Longitudinal trends in <i>C. difficile</i> infection rates and antibiotic prescription rates in Ontario prior to the introduction of mandatory public reporting.

    No full text
    <p>Seasonal variations in overall <i>C. difficile</i> infection rates (black solid line) and post-admission <i>C. difficile</i> infection rates (black dashed line) per 10,000 patient-days appear to follow seasonal changes in the overall monthly population burden of antibiotic prescriptions measured by the number of prescriptions in the Ontario Drug Benefit database (grey dashed line).</p

    Reduced rates of <i>C. difficile</i> infection associated with the introduction of public reporting.

    No full text
    <p>Observed monthly rates of <i>C. difficile</i> infection in Ontario (solid blue line) were generally increasing prior to the introduction of public reporting in September 2008 (identified by black dotted line), and declined after this intervention. Post-intervention rates were significantly lower than rates predicted by a Poisson model (red dashed line) derived from pre-intervention data points and adjusted for age and hospital strata, and overall burden of community antibiotic use (with 0- to 12-mo lags).</p

    Development of a Novel Multiplex PCR Method for the Rapid Detection of SARS-CoV-2, Influenza A Virus, and Influenza B Virus

    No full text
    Objective. A sensitive and specific multiplex fluorescence rapid detection method was established for simultaneous detection of SARS-CoV-2, influenza A virus, and influenza B virus in a self-made device within 30 min, with a minimum detection limit of 200 copies/mL. Methods. Based on the genome sequences of SARS-CoV-2, influenza A virus (FluA), and influenza B virus (FluB) with reference to the Chinese Center for Disease Control and Prevention and related literature, specific primers were designed, and a multiplex fluorescent PCR system was established. The simultaneous and rapid detection of SARS-CoV-2, FluA, and FluB was achieved by optimizing the concentrations of Taq DNA polymerase as well as primers, probes, and Mg2+. The minimum detection limits of the nucleic acid rapid detection system for SARS-CoV-2, FluA, and FluB were evaluated. Results. By optimizing the amplification system, the N enzyme with the best amplification performance was selected, and the optimal concentration of Mg2+ in the multiamplification system was 3 mmol/L; the final concentrations of SARS-CoV-2 NP probe and primer were 0.15 μmol/L and 0.2 μmol/L, respectively; the final concentrations of SARS-CoV-2 ORF probe and primer were both 0.15 μmol/L; the final concentrations of FluA probe and primer were 0.2 μmol/L and 0.3 μmol/L, respectively; the final concentrations of FluB probe and primer were 0.15 μmol/L and 0.25 μmol/L, respectively. Conclusion. A multiplex real-time quantitative fluorescence RT-PCR system for three respiratory viruses of SARS-CoV-2, FluA, and FluB was established with a high amplification efficiency and sensitivity reaching 200 copies/mL for all samples. Combined with the automated microfluidic nucleic acid detection system, the system can achieve rapid detection in 30 minutes
    corecore