732 research outputs found

    On the Optimal Linear Convergence Rate of a Generalized Proximal Point Algorithm

    Full text link
    The proximal point algorithm (PPA) has been well studied in the literature. In particular, its linear convergence rate has been studied by Rockafellar in 1976 under certain condition. We consider a generalized PPA in the generic setting of finding a zero point of a maximal monotone operator, and show that the condition proposed by Rockafellar can also sufficiently ensure the linear convergence rate for this generalized PPA. Indeed we show that these linear convergence rates are optimal. Both the exact and inexact versions of this generalized PPA are discussed. The motivation to consider this generalized PPA is that it includes as special cases the relaxed versions of some splitting methods that are originated from PPA. Thus, linear convergence results of this generalized PPA can be used to better understand the convergence of some widely used algorithms in the literature. We focus on the particular convex minimization context and specify Rockafellar's condition to see how to ensure the linear convergence rate for some efficient numerical schemes, including the classical augmented Lagrangian method proposed by Hensen and Powell in 1969 and its relaxed version, the original alternating direction method of multipliers (ADMM) by Glowinski and Marrocco in 1975 and its relaxed version (i.e., the generalized ADMM by Eckstein and Bertsekas in 1992). Some refined conditions weaker than existing ones are proposed in these particular contexts.Comment: 22 pages, 1 figur

    A Finite Element Splitting Extrapolation for Second Order Hyperbolic Equations

    Get PDF
    Splitting extrapolation is an efficient technique for solving large scale scientific and engineering problems in parallel. This article discusses a finite element splitting extrapolation for second order hyperbolic equations with time-dependent coefficients. This method possesses a higher degree of parallelism, less computational complexity, and more flexibility than Richardson extrapolation while achieving the same accuracy. By means of domain decomposition and isoparametric mapping, some grid parameters are chosen according to the problem. The multiparameter asymptotic expansion of the d-quadratic finite element error is also established. The splitting extrapolation formulas are developed from this expansion. An approximation with higher accuracy on a globally fine grid can be computed by solving a set of smaller discrete subproblems on different coarser grids in parallel. Some a posteriori error estimates are also provided. Numerical examples show that this method is efficient for solving discontinuous problems and nonlinear hyperbolic equations

    Development of braided rope seals for hypersonic engine applications. Part 2: Flow modeling

    Get PDF
    Two models based on the Kozeny-Carmen equation were developed to analyze the fluid flow through a new class of braided rope seals under development for advanced hypersonic engines. A hybrid seal geometry consisting of a braided sleeve and a substantial amount of longitudinal fibers with high packing density was selected for development based on its low leakage rates. The models developed allow prediction of the gas leakage rate as a function of fiber diameter, fiber packing density, gas properties, and pressure drop across the seal

    Learning Social Image Embedding with Deep Multimodal Attention Networks

    Full text link
    Learning social media data embedding by deep models has attracted extensive research interest as well as boomed a lot of applications, such as link prediction, classification, and cross-modal search. However, for social images which contain both link information and multimodal contents (e.g., text description, and visual content), simply employing the embedding learnt from network structure or data content results in sub-optimal social image representation. In this paper, we propose a novel social image embedding approach called Deep Multimodal Attention Networks (DMAN), which employs a deep model to jointly embed multimodal contents and link information. Specifically, to effectively capture the correlations between multimodal contents, we propose a multimodal attention network to encode the fine-granularity relation between image regions and textual words. To leverage the network structure for embedding learning, a novel Siamese-Triplet neural network is proposed to model the links among images. With the joint deep model, the learnt embedding can capture both the multimodal contents and the nonlinear network information. Extensive experiments are conducted to investigate the effectiveness of our approach in the applications of multi-label classification and cross-modal search. Compared to state-of-the-art image embeddings, our proposed DMAN achieves significant improvement in the tasks of multi-label classification and cross-modal search

    Meta Federated Reinforcement Learning for Distributed Resource Allocation

    Full text link
    In cellular networks, resource allocation is usually performed in a centralized way, which brings huge computation complexity to the base station (BS) and high transmission overhead. This paper explores a distributed resource allocation method that aims to maximize energy efficiency (EE) while ensuring the quality of service (QoS) for users. Specifically, in order to address wireless channel conditions, we propose a robust meta federated reinforcement learning (\textit{MFRL}) framework that allows local users to optimize transmit power and assign channels using locally trained neural network models, so as to offload computational burden from the cloud server to the local users, reducing transmission overhead associated with local channel state information. The BS performs the meta learning procedure to initialize a general global model, enabling rapid adaptation to different environments with improved EE performance. The federated learning technique, based on decentralized reinforcement learning, promotes collaboration and mutual benefits among users. Analysis and numerical results demonstrate that the proposed \textit{MFRL} framework accelerates the reinforcement learning process, decreases transmission overhead, and offloads computation, while outperforming the conventional decentralized reinforcement learning algorithm in terms of convergence speed and EE performance across various scenarios.Comment: Submitted to TW
    corecore