61 research outputs found

    Enhanced Expression of Pullulanase in Bacillus subtilis by New Strong Promoters Mined From Transcriptome Data, Both Alone and in Combination

    Get PDF
    Pullulanase plays an important role as a starch hydrolysis enzyme in the production of bio-fuels and animal feed, and in the food industry. Compared to the methods currently used for pullulanase production, synthesis by Bacillus subtilis would be safer and easier. However, the current yield of pullulanase from B. subtilis is low to meet industrial requirements. Therefore, it is necessary to improve the yield of pullulanase by B. subtilis. In this study, we mined 10 highly active promoters from B. subtilis based on transcriptome and bioinformatic data. Individual promoters and combinations of promoters were used to improve the yield of pullulanase in B. subtilis BS001. Four recombinant strains with new promoters (Phag, PtufA, PsodA, and PfusA) had higher enzyme activity than the control (PamyE). The strain containing PsodA+fusA (163 U/mL) and the strain containing PsodA+fusA+amyE (336 U/mL) had the highest activity among the analyzed dual- and triple-promoter construct stains in shake flask, which were 2.29 and 4.73 times higher than that of the strain with PamyE, respectively. Moreover, the activity of the strain containing PsodA+fusA+amyE showed a maximum activity of 1,555 U/mL, which was 21.9 times higher than that of the flask-grown PamyE strain in a 50-liter fermenter. Our work showed that these four strong promoters mined from transcriptome data and their combinations could reliably increase the yield of pullulanase in quantities suitable for industrial applications

    Acetate and auto-inducing peptide are independent triggers of quorum sensing in Lactobacillus plantarum

    Get PDF
    The synthesis of plantaricin in Lactobacillus plantarum is regulated by quorum sensing. However, the nature of the extra-cytoplasmic (EC) sensing domain of the histidine kinase (PlnB1) and the ability to recognize the auto-inducing peptide PlnA1 is not known. We demonstrate the key motif Ile-Ser-Met-Leu of auto-inducing peptide PlnA1 binds to the hydrophobic region Phe-Ala-Ser-Gln-Phe of EC loop 2 of PlnB1 via hydrophobic interactions and hydrogen bonding. Moreover, we identify a new inducer, acetate, that regulates the synthesis of plantaricin by binding to a positively charged region (Arg-Arg-Tyr-Ser-His-Lys) in loop 4 of PlnB1 via electrostatic interaction. The side chain of Phe143 on loop 4 determined the specificity and affinity of PlnB1 to recognize acetate. PlnA1 activates quorum sensing in log phase growth and acetate in stationary phase to maintain the synthesis of plantaricin under conditions of reduced growth. Acetate activation of PlnB was also evident in four types of PlnB present in different Lb. plantarum strains. Finally, we proposed a model to explain the developmental regulation of plantaricin synthesis by PlnA and acetate. These results have potential applications in improving food fermentation and bacteriocin production

    A duplex real-time NASBA assay targeting serotype-specific gene for rapid detection of viable S. enterica serovar Paratyphi C in retail foods of animal origin

    No full text
    Salmonella enterica serovars Paratyphi C is highly adapted to humans and can cause a typhoid-like disease with high mortality rates. In this study, three serovar-specific genes were determined for S. Paratyphi C, SPC_0871,SPC_0872, and SPC_0908, by comparative genomics method. Based on SPC_0908 and xcd gene for testing Salmonella spp., we have developed a duplex real-time nucleic acid sequence-based amplification (real-time NASBA) with molecular beacon approach for simultaneous detection of viable cells of Salmonella spp. and serotype Paratyphi C. The test selectively and consistently detected 53 Salmonella spp. (representing 31 serotypes) and 18 non-Salmonella strains. Additionally, the method showed high resistance to interference by natural background flora in pork and chicken samples. The sensitivity of the established approach was determined to be 4.89 CFU/25 g in artificially contaminated pork and chicken samples after pre-enrichment. We propose this NASBA-based protocol as a potential detection method for Salmonella spp. and serotype Paratyphi C in food of animal origin.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Two surfaces of a conserved interdomain linker differentially affect output from the RST sensing module of the Bacillus subtilis stressosome.

    No full text
    The stressosome is a 1.8-MDa cytoplasmic complex that conveys environmental signals to the σ(B) stress factor of Bacillus subtilis. A functionally irreducible complex contains multiple copies of three proteins: the RsbRA coantagonist, RsbS antagonist, and RsbT serine-threonine kinase. Homologues of these proteins are coencoded in different genome contexts in diverse bacteria, forming a versatile sensing and transmission module called RST after its common constituents. However, the signaling pathway within the stressosome itself is not well defined. The N-terminal, nonheme globin domains of RsbRA project from the stressosome and are presumed to channel sensory input to the C-terminal STAS domains that form the complex core. A conserved, 13-residue α-helical linker connects these domains. We probed the in vivo role of the linker using alanine scanning mutagenesis, assaying stressosome output in B. subtilis via a σ(B)-dependent reporter fusion. Substitutions at four conserved residues increased output 4- to 30-fold in unstressed cells, whereas substitutions at four nonconserved residues significantly decreased output. The periodicity of these effects supports a model in which RsbRA functions as a dimer in vivo, with the linkers forming parallel paired helices via a conserved interface. The periodicity further suggests that the opposite, nonconserved faces make additional contacts important for efficient stressosome operation. These results establish that the linker influences stressosome output under steady-state conditions. However, the stress response phenotypes of representative linker substitutions provide less support for the notion that the N-terminal globin domain senses acute environmental challenge and transmits this information via the linker helix

    Propidium monoazide (PMA) real-time PCR amplification for viable Salmonella species and S. Heidelberg in pork

    No full text
    Salmonella enterica serovar Heidelberg causes foodborne infections and is a major threat to the food chain and public health. In this study, we aimed to develop a rapid molecular typing approach to identify S. enterica serovar Heidelberg. Using comparative genomics, four serovar-specific gene fragments were identified, and a real-time polymerase chain reaction (PCR) combined with propidium monoazide (PMA) pretreatment method was developed for simultaneous detection of viable Salmonella sp. (invA) and S. Heidelberg(SeHA C3258). The assay showed 100% specificity for all strains tested. The assay was able to effectively distinguish viable or dead cell using PMA . The detection limit was 2.4 CFU/mL following a 6-h incubation in enrichment LB medium, and the assay could detect 1.7 Ă 102 CFU/mL in the presence of pork background flora. In artificially contaminated pork, real-time PCR detected inoculum levels of 1.15 CFU/25 g of pork after a 6-h enrichment. Thus, our findings indicated that this comparative genomics approach could be used to screen for serovar-specific fragments and that real-time PCR with PMA was a simple and reliable method for detecting viability of Salmonella species and S. Heidelberg.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Identification and characterization of Streptomyces flavogriseus NJ-4 as a novel producer of actinomycin D and holomycin

    No full text
    This paper is the first public report that Streptomyces flavogriseus can produce both actinomycin D and holomycin. The actinomycete strain NJ-4 isolated from the soil of Nanjing Agricultural University was identified as S. flavogriseus. This S. flavogriseus strain was found for the first time to produce two antimicrobial compounds that were identified as actinomycin D and holomycin. GS medium, CS medium and GSS medium were used for the production experiments. All three media supported the production of actinomycin D, while holomycin was detected only in GS medium and was undetectable by HPLC in the CS and GSS media. The antimicrobial activity against B. pumilus, S. aureus, Escherichia coli, F. moniliforme, F. graminearum and A. niger was tested using the agar well diffusion method. Actinomycin D exhibited strong antagonistic activities against all the indicator strains. Holomycin exhibited strong antagonistic activities against B. pumilus, S. aureus and E. coli and had antifungal activity against F. moniliforme and F. graminearum but had no antifungal activity against A. niger. The cell viability was determined using an MTT assay. Holomycin exhibited cytotoxic activity against A549 lung cancer cells, BGC823 gastric cancer cells and HepG2 hepatocellular carcinoma cells. The yield of actinomycin D from S. flavogriseus NJ-4 was 960 mg/l. S. flavogriseus NJ-4 exhibits a distinct capability and has the industrial potential to produce considerable yields of actinomycin D under unoptimized conditions

    Quantitative proteomic analysis reveals that anti-cancer effects of selenium-binding protein 1 in vivo are associated with metabolic pathways.

    No full text
    Previous studies have shown the tumor-suppressive role of selenium-binding protein 1 (SBP1), but the underlying mechanisms are unclear. In this study, we found that induction of SBP1 showed significant inhibition of colorectal cancer cell growth and metastasis in mice. We further employed isobaric tags for relative and absolute quantitation (iTRAQ) to identify proteins that were involved in SBP1-mediated anti-cancer effects in tumor tissues. We identified 132 differentially expressed proteins, among them, 53 proteins were upregulated and 79 proteins were downregulated. Importantly, many of the differentially altered proteins were associated with lipid/glucose metabolism, which were also linked to Glycolysis, MAPK, Wnt, NF-kB, NOTCH and epithelial-mesenchymal transition (EMT) signaling pathways. These results have revealed a novel mechanism that SBP1-mediated cancer inhibition is through altering lipid/glucose metabolic signaling pathways

    Preparation of Gallic Acid-Grafted Chitosan Using Recombinant Bacterial Laccase and Its Application in Chilled Meat Preservation

    No full text
    To improve the antibacterial and antioxidant properties of chitosan (CS), CS grafted with gallic acid (GA) using recombinant bacterial laccase from Bacillus vallismortis fmb-103 (fmb-rL103) as a catalyst. The structures of grafted chitosans were identified using Fourier transform infrared spectroscopy (FT-IR) and UV visible spectrum (UV–Vis spectroscopy). After gallic acid grafting, the antibacterial properties of chitosans against Pseudomonas, Acinetobacter, Brochothrix thermosphacta, Escherichia coli, Staphylococcus aureus, Salmonella, and Listeria monocytogenes were significantly improved. Meanwhile, 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging results showed that the antioxidant properties of grafted CS increased as well. The preservative effects of the grafted chitosan on chilled meat were then investigated. For this purpose, the quality indexes of the chilled meat during the storage were monitored, including total bacterial count, total basic volatile nitrogen (TVB-N) content, pH value, color and thiobarbituric acid reactive substances (TBARS) and so on. The results showed that coating with the grafted chitosan retarded the growth of spoilage bacteria, and decreased TVB-N and TBARS values of meat. The shelf life of chilled meat coated by CS grafted with GA (GA-g-CS) also extended from 6 days to 18 days at 4°C. These results provided a theoretical basis for the future application of the GA-g-CS in the preservation of chilled meat.Highlights:(1)The temperature and pH-stable bacterial laccase was used to synthesize gallic acid grafted chitosan.(2)Antioxidant and antibacterial properties of chitosan were improved through grafting gallic acid.(3)Storage properties of chilled meat were improved by coating with gallic acid grafted chitosan
    corecore