384 research outputs found

    Calculated mixing enthalpies of 11 IIB-IVB and IIB-VB binary alloy systems using a subregular model

    Get PDF
    There have been no theoretical calculations of the mixing enthalpies for group B metal alloy systems using the famous Miedema theory or from first principles. Therefore such systematic calculations for the 11 group IIB-IVB and IIB-VB binary alloy systems are performed for the first time using a subregular model. The results show that the agreement between the calculations and experimental data is pretty good and could be accepted from the theoretical or experimental points of view. It can be concluded from the results that the subregular model can be used for calculating the mixing enthalpies of the group B alloy systems, at least for the IIB-IVB and IIB-VB alloy systems

    Alpha6beta4 integrin crosslinking induces EGFR clustering and promotes EGF-mediated Rho activation in breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The α6β4 integrin is overexpressed in the basal subtype of breast cancer and plays an important role in tumor cell motility and invasion. EGFR is also overexpressed in the basal subtype of breast cancer, and crosstalk between α6β4 integrin and EGFR appears to be important in tumor progression.</p> <p>Methods</p> <p>We evaluated the effects of α6β4 crosslinking on the distribution and function of EGFR in breast carcinoma cell line MDA-MB-231. Receptor distribution was evaluated by fluorescence microscopy and multispectral imaging flow cytometry, and ligand-mediated EGFR signaling was evaluated using Western blots and a Rho pull-down assay.</p> <p>Results</p> <p>Antibody-mediated crosslinking of α6β4 integrin was sufficient to induce cell-surface clustering of not only α6β4 but also EGFR in nonadherent cells. The induced clustering of EGFR was observed minimally after 5 min of integrin crosslinking but was more prominent after 15 min. EGFR clustering had minimal effect on the phosphorylation of Akt or Erk1,2 in response to EGF in suspended cells or in response to HB-EGF in adherent cells. However, EGFR clustering induced by crosslinking α6β4 had a marked effect on Rho activation in response to EGF.</p> <p>Conclusion</p> <p>Crosslinking α6β4 integrin in breast carcinoma cells induces EGFR clustering and preferentially promotes Rho activation in response to EGF. We hypothesize that this integrin-EGFR crosstalk may facilitate tumor cell cytoskeletal rearrangements important for tumor progression.</p

    Lattice and Magnetic structures of PrFeAsO, PrFeAsO0.85F0.15 and PrFeAsO0.85

    Full text link
    We use powder neutron diffraction to study the spin and lattice structures of polycrystalline samples of nonsuperconducting PrFeAsO and superconducting PrFeAsO0.85F0.15 and PrFeAsO0.85. We find that PrFeAsO exhibits an abrupt structural phase transitions at 153 K, followed by static long range antiferromagnetic order at 127 K. Both the structural distortion and magnetic order are identical to other rare-earth oxypnictides. Electron-doping the system with either Fluorine or oxygen deficiency suppresses the structural distortion and static long range antiferromagnetic order, therefore placing these materials into the same class of FeAs-based superconductors.Comment: 14 pages, 3 figures, 1 tabl

    Indexing Strategies for Rapid Searches of Short Words in Genome Sequences

    Get PDF
    Searching for matches between large collections of short (14–30 nucleotides) words and sequence databases comprising full genomes or transcriptomes is a common task in biological sequence analysis. We investigated the performance of simple indexing strategies for handling such tasks and developed two programs, fetchGWI and tagger, that index either the database or the query set. Either strategy outperforms megablast for searches with more than 10,000 probes. FetchGWI is shown to be a versatile tool for rapidly searching multiple genomes, whose performance is limited in most cases by the speed of access to the filesystem. We have made publicly available a Web interface for searching the human, mouse, and several other genomes and transcriptomes with oligonucleotide queries

    Multiplexed five-color molecular imaging of cancer cells and tumor tissues with carbon nanotube Raman tags in the near-infrared

    Full text link
    Single-walled carbon nanotubes (SWNTs) with five different C13/C12 isotope compositions and well-separated Raman peaks have been synthesized and conjugated to five targeting ligands in order to impart molecular specificity. Multiplexed Raman imaging of live cells has been carried out by highly specific staining of cells with a five-color mixture of SWNTs. Ex vivo multiplexed Raman imaging of tumor samples uncovers a surprising up-regulation of epidermal growth factor receptor (EGFR) on LS174T colon cancer cells from cell culture to in vivo tumor growth. This is the first time five-color multiplexed molecular imaging has been performed in the near-infrared (NIR) region under a single laser excitation. Near zero interfering background of imaging is achieved due to the sharp Raman peaks unique to nanotubes over the low, smooth autofluorescence background of biological species.Comment: Published in Nano Researc

    Notch-dependent repression of miR-155 in the bone marrow niche regulates hematopoiesis in an NF-κB-dependent manner

    Get PDF
    The microRNA miR-155 has been implicated in regulating inflammatory responses and tumorigenesis, but its precise role in linking inflammation and cancer has remained elusive. Here, we identify a connection between miR-155 and Notch signaling in this context. Loss of Notch signaling in the bone marrow (BM) niche alters hematopoietic homeostasis and leads to lethal myeloproliferative-like disease. Mechanistically, Notch signaling represses miR-155 expression by promoting binding of RBPJ to the miR-155 promoter. Loss of Notch/RBPJ signaling upregulates miR-155 in BM endothelial cells, leading to miR-155-mediated targeting of the nuclear factor κB (NF-κB) inhibitor κB-Ras1, NF-κB activation, and increased proinflammatory cytokine production. Deletion of miR-155 in the stroma of RBPJ(-/-) mice prevented the development of myeloproliferative-like disease and cytokine induction. Analysis of BM from patients carrying myeloproliferative neoplasia also revealed elevated expression of miR-155. Thus, the Notch/miR-155/κB-Ras1/NF-κB axis regulates the inflammatory state of the BM niche and affects the development of myeloproliferative disorders

    An Adaptive Fast Multipole Boundary Element Method for Poisson−Boltzmann Electrostatics

    Get PDF
    The numerical solution of the Poisson−Boltzmann (PB) equation is a useful but a computationally demanding tool for studying electrostatic solvation effects in chemical and biomolecular systems. Recently, we have described a boundary integral equation-based PB solver accelerated by a new version of the fast multipole method (FMM). The overall algorithm shows an order N complexity in both the computational cost and memory usage. Here, we present an updated version of the solver by using an adaptive FMM for accelerating the convolution type matrix-vector multiplications. The adaptive algorithm, when compared to our previous nonadaptive one, not only significantly improves the performance of the overall memory usage but also remarkably speeds the calculation because of an improved load balancing between the local- and far-field calculations. We have also implemented a node-patch discretization scheme that leads to a reduction of unknowns by a factor of 2 relative to the constant element method without sacrificing accuracy. As a result of these improvements, the new solver makes the PB calculation truly feasible for large-scale biomolecular systems such as a 30S ribosome molecule even on a typical 2008 desktop computer
    corecore